

TEAM PERFORMANCE OF UNMANNED VEHICLES WITH DIVERSE CAPABILITES

Amir Matlock, University of Michigan

Introduction

- Applications of Unmanned Vehicles
 - Intelligence
 - Surveillance and Reconnaissance
 - Search
 - Vehicle Tracking
 - Area Patrolling

Teams Of Unmanned Vehicles

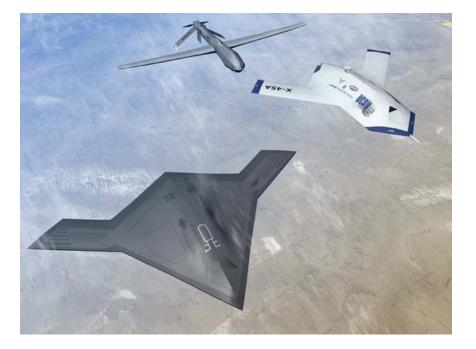
- No Free Lunch Theorem
 - Over all search and optimization problems, all agents perform equally well, when no prior knowledge is available to exploit
 - Does not extend to teams of unmanned vehicles
- Problem Statement
 - Build an effective heterogeneous team of unmanned vehicles to search an unknown environment, without any prior knowledge of the search space.

Past Research

- Focused on
 - Multi-vehicle cooperation of predetermined (homogeneous) platoons
 - Communication among heterogeneous teams
 - Building heterogeneous teams to exploit some knowledge of the field (teams with specialized agents).
 - Classified heterogeneous and homogeneous depending on if all the agents were the same or alike

Diversity among Heterogeneous Teams

- Past research failed to:
 - Examine the affects of diversity among heterogeneous teams
 - Varying agents on a team
 - No formal qualitative measurement of diversity

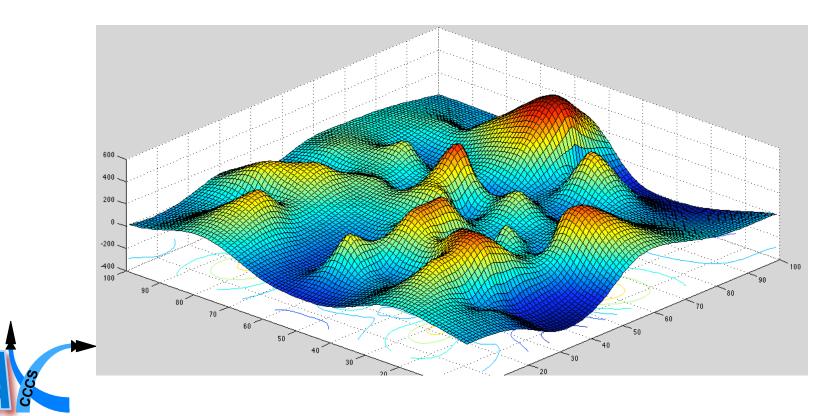


Effects of Diversity

- Influences from Social Science (Scott Page)
 - Mathematical Proof & Computational Experiment
 - Diverse teams on average outperform the best suited team
 - Assumptions
 - A problem is inherently difficult (no single agent can always find the optimum)
 - 2) There is a great enough diversity among the agents, (when one agent gets stuck, there is always another agent that can find an improvement)
 - 3) The performance of the best agent is unique

Computational Experiment

- Team Search Mission
 - Random Team (presumably more diverse) vs. Best Team
 - Function optimization (differentiable *F*), $F : X \times Y \rightarrow Z$; $X, Y, Z \in R$
 - Z- target value



Steepest Ascent Method

- Characteristics
 - Function gradient, and gradient constant dependent
 - Converges relatively fast to local extrema for optimal gradient constants
 - Poor convergence for large and small gradient constants
- Example
 - An autonomous underwater vehicle equipped with sensors that measure water temperature and follows the gradient to find the position with the highest temperature

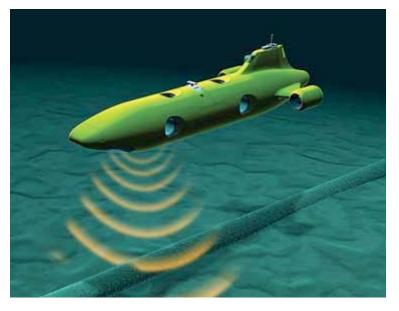
$$\Phi_{k} = \left\{ k \mid x_{n+1} = \frac{\partial F}{\partial x} + x_{n}, y_{n+1} = \frac{\partial F}{\partial y} + y_{n} \right\}$$

$$\Phi_{k} = \text{heuristic}$$

$$k = \text{gradient constant}$$

$$\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} = \text{gradient}$$

$$x_{n}, y_{n} = \text{coordinates}$$



Step Search Algorithm

- Characteristics
 - Independent of gradient
 - Looks along a radius only in the front of its position
- Example
 - A UAV equipped with cameras as sensors that can see in front of its position

(2)
$$\Theta_s = \{s > 0 \mid x_{n+1} = s + x_n, y_{n+1} = s + y_n\}$$

 $\Theta_s = \text{heuristic}$
 $s = \text{step search constant}$
 $x_n, y_n = \text{coordinates}$

Expected Performance

- Expected performance value
 - Unity probability distribution of initial conditions
 - Individual agents were allowed to start at every initial condition and apply their heuristic to traverse the search space until $F(x_{n+1},y_{n+1}) < F(x_n,y_n)$
 - The higher the expected performance value the better the agent is presumed to be

3)
$$E[F;\psi,v] = \frac{1}{n^2} \cdot \sum_{x_i=1}^n \sum_{y_i=1}^n F[\psi(x_i,y_i)]$$
$$\psi = \text{heuristic}$$

v = probability distribution of initial condition

- x_i, y_i = initial condition
- $F[\psi(x_i, y_i)]$ = expected performance

Diversity

• Diversity is defined as the standard deviation of the step constant or gradient constant for the members on the team

(4)
$$\delta = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (c_i - \overline{c})^2}$$

$$\delta$$
 = diversity

- n = number of agents on a team
- c = s (step constant) for step search
- c = k (gradient constant) for steepest ascent method

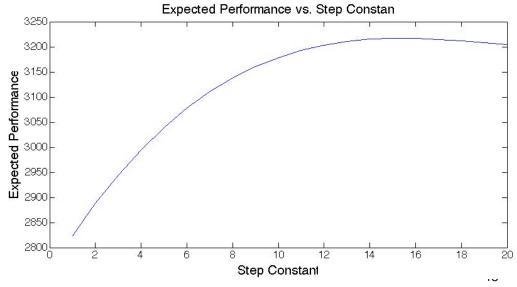
Computational Experiment

- Teams of 5
 - 5 best agents (highest expectance performance) vs. 5 random agents
 - Teams worked sequentially, the following agent started at the optimal point of the previous agent
 - Each agent attempted to optimize function 3 times
- Results are shown for
 - 5000 initial conditions per a functions/ per team
 - 2000 optimization functions

Step Search Results

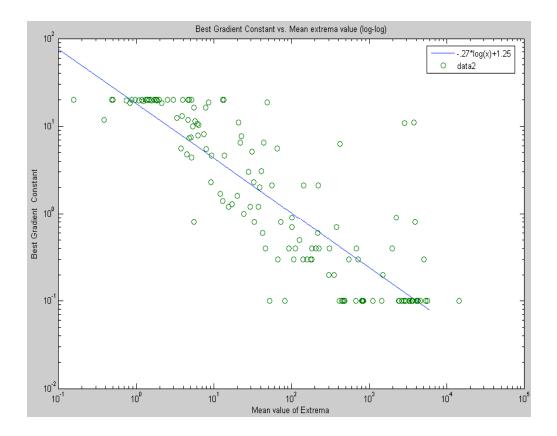
- Random team outperformed the best team by 9%
- Random team expected performance is 6% lower than the best team
- Random team outperformed its expected value by16%
 - Greater ability to become unstuck on local minimums
- Best team outperformed its expected value by 3%

	Best Team	Random Team
Average Maximum	6.3x10 ³	
Average Expected Value	3.3x10 ³	3.1x10 ³
Average Diversity	2.9 (29%)	5.7 (57%)
Average Performance	3.4x10 ³	3.7x10 ³



Optimal Gradient Constant

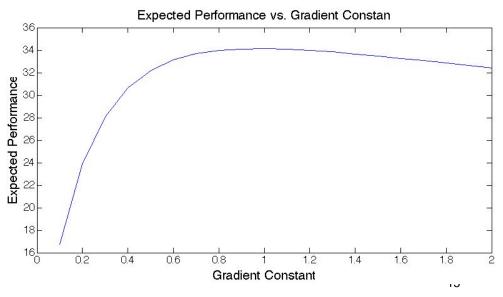
- Optimal Gradient Constant vs. Mean Extrema
 - Find range of optimal gradient constants



Steepest Ascent Results

- Random team outperformed the best team by 3%
- Random team expected performance is 12% lower than the best team
- Random team outperformed its expected value by 19%
 - Greater ability to become unstuck on local minimums
- Best team outperformed its expected value by 6%

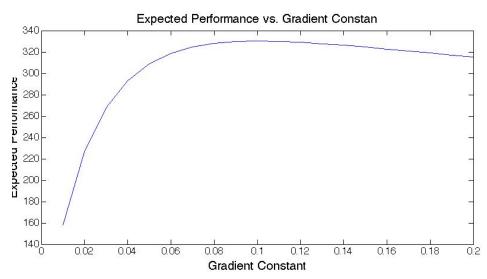
	Best Team	Random Team
Average Maximum	64.3	
Average Expected Value	36.0	31.8
Average Diversity	.16 (16%)	.53 (56%)
Average Performance	38.2	39.3



Steepest Ascent Results

- Random team outperformed the best team by 3%
- Random team expected performance is 14% lower than the best team
- Random team outperformed its expected value by 24%
 - Greater ability to become unstuck on local minimums
- Best team outperformed its expected value by 6%

	Best Team	Random Team
Average Maximum	625.4	
Average Expected Value	347.7	304.9
Average Diversity	.016 (16%)	.053 (53%)
Average Performance	368.4	379.5



Conclusion

 Diverse teams of UAV on average outperform the best-suited, with the goal being to search an unknown field for the highest value target.

Publications

 Submitted: ASME Dynamic Systems and Control Conference (DSCC)-2008

