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COUNTER Scenario

• A small aerial vehicle (SAV) discovers objects of interest (OOI) from a 

high altitude (~ 1000 ft.)

• The SAV then assigns tours to multiple micro aerial vehicles (MAVs) 

to investigate the OOI at a lower altitude (~ 100 ft.)

• An operator at a remote ground station is tasked with identifying OOI 

that have a defining feature (e.g. a weapon or explosive)
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Stochastic Controller

• MAVs investigate the various OOI 

• Operator indicates feature or no feature

• Controller calculates an expected reward for a revisit

• MAV will revisit if the expected cost is within the threshold

• The threshold is a function of the following

• Exisiting fuel (reserve)

• Operator response

• Operator delay

• Expected reward

• Remaining OOI on the tour
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t = target truth

v = feature visibility

r = operator response

T = true

F = false

subscript 1 : first visit

subscript 2 : second visit

Feature

No Feature

Feature Visible

Feature Not Visible

First Visit

Second Visit
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Motivation

The original expected reward function was setup for automatic target 
recognition† (ATR). This is not inline with the existing COUNTER scenario 
because the MAVs are not equipped with an ATR sensor.

The ATR overrides any response the operator may make:

P( t=T | r1=T ∩ r2=ATR:T ) = 1

P( t=T | r1=F ∩ r2=ATR:T ) = 1

P( t=F | r1=T ∩ r2=ATR:T ) = 0

P( t=F | r1=F ∩ r2=ATR:T ) = 0

P( t=T | r1=T ∩ r2=ATR:T ) = 1

P( t=T | r1=F ∩ r2=ATR:T ) = 1

P( t=F | r1=T ∩ r2=ATR:T ) = 0

P( t=F | r1=F ∩ r2=ATR:T ) = 0

Reasons for not using an ATR sensor include:

• Lighting conditions (shadows, glare)

• Limited onboard computational power

• Noisy data 

† Pachter, M., Chandler, P. and Darbha, S., \Optimal Control of an ATR Module Equipped MAV-Human Operator Team,"
Proceedings of Cooperative Control and Optimization Conference, Gainesville, FL, January 2006.
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Objective

• Design a new reward function using visibility and response 

probabilities for two visits

• Evaluate various reward methods 

• Benchmark these against an operator delay revisit threshold
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A Priori Terms

P(t=T) 

Pto

1-Pfto

Pi( r | v∩ t )

Operator Confusion Matrix

Probability that an OOI has a feature

Probability of Detection

Probability of False Alarm.

Probability of Response given Visibility & Target Truth
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Probability Outcome Tree

Target Truth

First Visit Visibility

First Visit Response

Second Visit Visibility

Second Visit Response
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Expected Reward Functions

Method 3: Discrete Values

Method 1: Sum of Reciprocals†

Method 2: Mutual Information†

Discrete sub-reward values chosen for each outcome

1

2

† Girard, A., Pachter, M. and Chandler, P., \Decision Making Under Uncertainty and Human Operator Model for Small
UAV Operations," Proceedings of AIAA Guidance, Navigation and Control Conference, Keystone, CO, August 2006.
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Probabilities

3

4

5

Used as gains applied against the individual rewards:

Values used inside of the individual reward functions:
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Value

ValT = ∑ P( r2 ∩ v2 | r1 ∩ v1 )m * Rewardm

ValF = ∑ P( r2 ∩ v2 | r1 ∩ v1 )n * Rewardn

For m= 1,…,16

For n = 17,…,20

Threshold Matrix ( PTValT or PFValF , Targets, Reserve, Operator Delay )

From the threshold matrices we can obtain two surfaces. One for 

each of the response that operator can make on the first visit.

The threshold value is determined by how much reserve fuel 

remains, the operator delay, and how many OOI are left to visit.

Essentially, if the expected revisit cost is less then the threshold 

the MAV will revisit the OOI.
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Method 1 Threshold Matrices



4/9/2008 13

C
C

C
S

4/9/2008 J. Baker - University of Michigan - AFRL 13

Method 2 Threshold Matrices
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Method 3 Threshold Matrices
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For each trial

If a revisit occurred

If the t=T and [ (r1=T & r2=F) or (r1=F & r2=T) ]

TrueScore++

If the t=F and ( r1=F & r2=F )

FalseScore++

Determine mean value for scores

Normalize the scores and sum for overall score

3 methods + benchmark

100 Monte Carlo simulations each (in MultiUAV2)
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Results and Conclusions
• Negative reward values causes saturation in the threshold function

• Large volume under a threshold surface for one case and small 

volume for the other will cause bias

8.1787.3116.1782.356Adj. Total

0.5782.3110.0780.456Adj. False

7.6005.0006.1001.900Adj. True

1.5312.8750.8630.943Std Dev

1.2802.5800.6800.600Total Score

1.4532.9770.4320.911False Std Dev

0.5202.0800.0700.410False Score Mean

0.8420.6740.8030.419True Std Dev

0.7600.5000.6100.190True Score Mean

Method 3Method 2Method 1Benchmark

• Method 2 had the best “False Score”

• Method 3 had the best “ True Score”

• Method 3 had the best overall adjusted score
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• The reward function outputs two values

• Expected Reward given r1=T

• Expected Reward given r1=F

• An optimization function could replace the reward function

• It would modulate the expected rewards seeking optimal values

• This would customize the controller for the mission at hand

• This is feasible for scenarios where 24/7 coverage is required

• Issues

• Absolute data about target truth is not known

• May require a calibration stage with mock targets

• Recalibration might be necessary for individual operators

• The reward function is also sensitive to this
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• Improve the values within the discrete reward method

• Refine the information theory reward functions

• Conduct flight tests to measure the performance of the 

stochastic controller in a real stochastic environment

• Develop an optimization function

• Further development on the operator model


