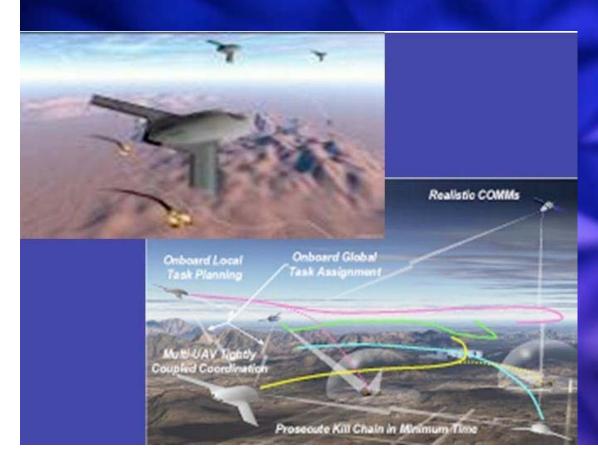


UAV Cooperative Control – Motivation & Introduction

August 29, 2007 Dr. Corey Schumacher AFRL/VACA Air Vehicles Directorate Air Force Research Laboratory

- Introduction
 - USAF and AFRL Technology Goals
 - CSCoE and MACCCS Topics
- AF Scenarios
 - Recent Work
 - Future Scenario Directions
- Collaboration Plan
- Summary



AFRL Collaborative System Control Strategic Technology Thrust

Collaborative System Control: Develop the insights, technology, and tools required to enable verifiable safe and effective collaborative control of networked air, space & cyber systems by considering integrated assets across physical domains (air and space), information assets in cyber domain (networks, databases, infrastructure), and human interaction.

Technology areas:

- control algorithm development across multiple domains
- validation & verification methodologies for system of systems
- robust & secure networked control techniques
- trust worthy next generation control design methodologies

AFRL/VA - Cooperative Airspace Operations Air Domain - Time Phased Attributes

Cooperative/Collaborative

complex and urban

Human as Supervisor

environments

control of unmanned assets in

Operations in Manned/Unmanned Teams

- Single coordinated UCAV package
- Adaptive to continue the mission
- Human as Operator

Safe Operations From Airbases and In Airspace

- Min ATC Op's "See & Avoid" (1 v 1) – Equivalent performance to man
- Flexible ATC & Ground Op's - Equivalent performance to man, "File & Fly"
 - n v m
 - GATM compliance
- Ability to operate w/o GPS

Operations in Manned/Unmanned Teams

- Safety & Reliability Equivalent to manned systems
- V&V processes

 V&V'able with today's capabilities

Improve upon existing

Mid Term (10)

- **Distributed/Cooperative** Control of multiple packages and ISR assets
- Adaptive for max effectiveness in dynamic environment
- Human as Teammate

 Design for Certification -Affordable V&V of highly complex, nondeterministic, mixed criticality, and multientity systems

Far Term (15)

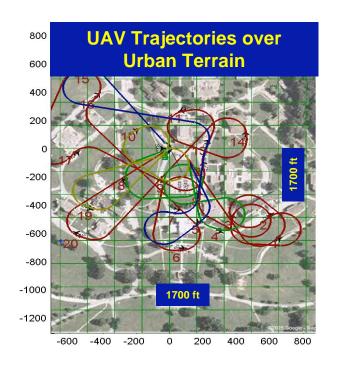
UAV Cooperative Control Research Directions in AFRL/ VACA

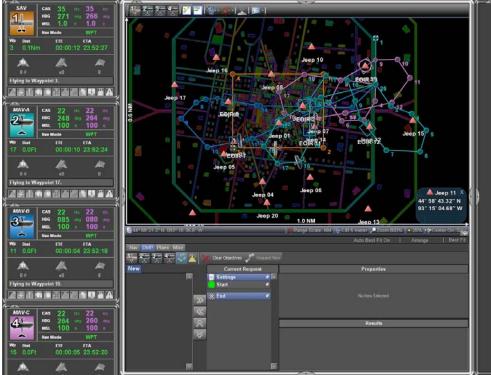
- Major Topics:
 - Operator-on-the-loop cooperative planning
 - Cooperative Control in a Heterogeneous System of Systems environment
- Desired Traits:
 - Provably good performance of planning algorithms
 - Computationally feasible, scalable
 - Targeted to VA 6.2/6.3 program scenarios
 - Implemented, tested in AFRL mission simulations
 - Connected over a limited communication network
 - Flexible to changing mission requirements, dynamic adversaries
- Multiple levels of human involvement
 - High level supervision, imagery analysis, task prioritization

AF-relevant Missions

- A few quotes:
 - "...design an interconnected decision and control system that allows a variety of assets to act as a coordinated system of systems."
 - "...allow human operators to flexibly interact with the system on multiple levels."
 - "...achieve desirable group behavior in a resource-limited environment."
 - "challenges to be addressed may include... multi-objective ad hoc collaboration, heterogeneous systems, mixed initiative control, scalability in a system-of-systems architecture... and system robustness"
- Can be summarized as: Mixed initiative control of heterogeneous systems of systems
- Tightly Integrated with AFRL/VACA research effort

- Introduction
 - USAF and AFRL Technology Goals
 - CSCoE and MACCCS Topics
- AF Scenarios
 - Recent Work
 - Future Scenario Directions
- Collaboration Plan
- Summary





- COUNTER 6.2 program transition target for much of VACA's recent 6.1 research
 - Cooperative ISR in an urban environment flight testing
 - Heterogeneous team of UAVs Operator oversight
 - Using Vigilant Spirit Ground Station developed by AFRL/HE

"Operational" Scenarios for future research

Persistent ISR by UAV team

- Urban terrain likely
- Heterogeneous UAV assets
- Varied Task list
 - Search
 - Target imaging, ID
 - Tracking (vehicles, dismounts)
 - Continuous area surveillance
 - Patrol
 - Laser designation of targets
 - "Safe Path" determination
 - Attack

Additional Scenario Characteristics

- Multiple levels of human interaction
 - UAV Operators
 - Mission Commander
 - Ground forces, other air assets
- Substantial range of UAV and manned assets involved
- Dynamic Environment
- Identify potentially or actively hostile personnel

Varied scenarios:

 Perimeter defense, convoy escort, combat search & rescue, ground forces support

- Introduction
 - USAF and AFRL Technology Goals
 - CSCoE and MACCCS Topics
- AF Scenarios
 - Recent Work
 - Future Scenario Directions
- Collaboration Plan
- Summary

- Substantial MAX Center participation in VA visitor programs
- Frequent collaboration visits (in both directions)
- Extensive involvement with MAX by AFRL researchers
- Joint research projects
- Webmeetings "difficult" due to WPAFB restrictions
- Common simulation environment
 - Algorithms applicable to AFRL/VA scenarios
 - SW/code for use in VA simulations
- We should be able to point at concrete transitions into AFRL/VACA's research program
 - Transitions should flow in both directions

Dr Corey Schumacher

Mr Phil Chandler (Branch Tech Advisor)

Dr Mark Mears Dr Raymond Holsapple **Capt Nidal Jodeh Dr Derek Kingston** Mr Steve Rasmussen (GD) Dr Dave Gross (GD) Dr Nicola Ceccarelli (NRC) Prof Meir Pachter (AFIT)

Visiting Researchers in 2007:

Prof Anouk Girard (UM - MAX Center) Prof Maruthi Akella (UT-Austin) Prof Guoxiang Gu (LSU) Prof Emilio Frazzoli (MIT – MAX Center) Mr Karl Obermeyer (UCSB)

Mr John Baker (UM – MAX Center) Mr Jeff Saunders (BYU) Mr Tyler Summers (LSU) Prof Randy Beard - BYU

- Presently used for COUNTER, VACA in-house work
- Will be released for use by MAX Center also
- Common simulation environment to foster collaboration, transitions

Left Screen Sample

Right Screen Sample

- Mixed Initiative Cooperative Control of Heterogeneous Systems of Systems
 - UAV Focus, but not solely UAVs
 - Critical technology for the future Air Force
- Combination of theoretical and applied research
 - Scenario details dependent on future VA directions
 - Fundamental theoretical issues independent of scenario
- Close collaboration between AFRL/VACA and UM, MIT teams
 - One team!
 - Extended visits in both directions
 - Common scenarios, challenges

• Common simulation environment

