
Humans-in-the-Loop Target Classification

Mid-Year Review, Department of Aerospace Engineering,

University of Michigan, April 3, 2008.

Presenter Tom Temple

Joint work with Ketan Savla and Emilio Frazzoli

Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology

Tom Temple (LIDS MIT) Humans-in-the-Loop Target Classification April 3, 2008 1 / 24



Motivation
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Problem Formulation

Problem Formulation

The surveillance of a region Q is
entrusted to n human operators
and m UAVs.

Targets arrive randomly in Q at
a rate λ with uniform
distribution over Q.

The UAVs are routed to visit
targets and record video.
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A target is classified when a
human operator has seen
enough video of the target to
decide whether it is “lethal” or
“benign.”
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Problem Formulation

Objective

Goals

(i) Design joint motion coordination and operator task allocation policies

(ii) Characterize the quality of service as a function of n and m.

Quality of Service

The average time between the arrival of a target and its classification.

Approach

Theoretical lower bounds, efficient policy design.
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Problem Formulation

Assumptions

The humans watch video at a real time rate.

Operators can stop and resume where they left off.

Another operators can also resume where a different operator left off.

The an operator’s belief states about a target is not interpretable by
the decision support system.
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Problem Formulation

The Blame Game

Imagine that a customer is waiting for service at a particular instant
blames either the UAVs or the humans for having to wait.

Specifically, if all the human operators are busy at that instant they
blame the humans and otherwise they blame the UAVs.

Define Wv,Wh as the expected integrals of blame for the UAVs and
humans, respectively.

Wq = Wv + Wh
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Theory

The Light Load case

ρh → 0

Wh → 0

Wv is simply the travel time

Wq ∝
1√
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Heavy Load

Heavy Load: Many UAVs

ρh → 1

m→∞

The resulting system is a M/G/n
queue

Wq = Wh =
λ(λ−2 + σ2

s/n2)
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Heavy Load

Heavy Load: Few UAVs

ρh → 1

m = n

Reduces to the multi-agent Dynamic
Traveling Repair-person Problem
(mDTRP)

Wq ∝
λ

n2(1− ρh)2
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Heavy Load

Heavy Load: general number of UAVs

ρh → 1

Let k = m− n, and hold n
fixed.

For the UAVs to be blamed, all
k free UAVs must to be
en-route to targets when an
operator becomes free.
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Wv =
λ

aon2(1− ρh)2 + a1kn(1− ρh) + a2k2
Bounded!
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Validation

Simulations: Heuristics

A UAV receives a reward whenever a classification is made using video
that they have collected.

UAVs always maximize their expected reward rate for their current
and immediate next target.

When a new target appears, the UAVs bid on it.

A UAV is allowed to leave a target whenever doing so gives a higher
rate of reward. This allows for the use of offline information collection.
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Validation

Simulation
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Validation

Simulation
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Validation

Empirical Results
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Summary

Summary

“Human-in-the-loop vehicle routing policies for dynamic environments,”
IEEE CDC, Dec 2008.

Provable optimality for
simple algorithms

Provide an analytical
foundation for general
algorithms

Addressed how
“situational awareness”
affects system
performance

W ∼ (1− ρh)
−1

W ∼ 1√
m

of ρh for ρh ≤ ρv

W independent

Inverse Quadratic
Transition in m− n

1

0

W ∼ λ
m2(1−ρv)2

ρh = λs̄
n

ρv = λs̄
m

1

W ∼ λ
n2(1−ρh)2

What if the human operators’ decision time is affected by their load factor?
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Situational Awareness

Situational Awareness

For the moment, consider a single operator,

We include “Situational Awareness” by letting s = s0χ(ρ)

We can arbitrarily scale s0 such such that the minimum of χ is 1,
without loss of generality.

We assume χ is convex, bounded and differentiable on [0, 1]

Since ρ is itself a function of s, the steady state values are the
solution to the coupled equations,

s̄ = s̄0χ(ρ)

ρ =
1

λs̄

Tom Temple (LIDS MIT) Humans-in-the-Loop Target Classification April 3, 2008 16 / 24



Situational Awareness

Multiple Operators

With multiple operators we are free to choose a solution.

The optimum can be expressed as a straightforward convex
optimization problem

min
{ρ1,...,ρn}

∑n
i=1 ρiχ(ρi)s̄0

s.t.
∑n

i=1
ρi

s̄0χ(ρi)
= λ

0 ≤ ρi ≤ 1, i = 1, . . . , n.
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Situational Awareness under Heavy Load

Situational Awareness under Heavy Load

The results presented for the heavy load case are based on queuing
arguments that require system stability and do not necessarily carry over.

For fixed s̄, stability is equivalent to ρh < 1.

With variable s̄, this is not necessarily sufficient

Tom Temple (LIDS MIT) Humans-in-the-Loop Target Classification April 3, 2008 18 / 24



Situational Awareness under Heavy Load

Two Cases for Real-World χ

If dχ(1)
dρ ≤ χ(1) If dχ(1)

dρ > χ(1)

ρh < 1 is sufficient for stability

previous heavy load results hold

ρh = 1 is not optimally
productive

there exists some ρmax < 1 such
that ρh ≤ ρmax is necessary for
stability
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Situational Awareness under Heavy Load

Perceived load, ρ̃

Defining Situational Awareness in terms of average load, assumes that
the operators know the average load a priori.

A more realistic model would define Situational Awareness in terms of
perceived load, ρ̃i which is estimated by operator i.

The “error” in this estimation is another potential source of instability.

Tom Temple (LIDS MIT) Humans-in-the-Loop Target Classification April 3, 2008 20 / 24



Situational Awareness under Heavy Load

Estimation Stability
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Situational Awareness under Heavy Load

Decision Support Implications

We need to carefully manage the perceived operator loads if we are to
guarantee system stability.

If for operator i, ρ̃i > ρmax, then we need to give him a break, even if
there are outstanding targets.

Corresponds to previous results with

n′ ← nρmax and,

ρ′h ← ρ/ρmax.
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Summary

Summary

“Efficient routing of multiple vehicles for human-supervised services in a
dynamic environment,” AIAA GNC, Aug 2008.

Addressed how “situational awareness” affects system performance

Identified queue stability conditions in heavy load

Determined how and when previous results can be used.
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Future Work

Future Work

Vanishing targets (customer impatience).

Vehicles with finite capacity e.g. fuel, range, memory.

Alternate support system architectures allowing more involvement by
human operators in the mission tasks.
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