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ABSTRACT
The hypersonic aeroelastic problem of a double wedge air-

foil typical cross-section is studied using three different unsteady
aerodynamic loads: (1) third order piston theory, (2) Euler solu-
tion, and (3) unsteady Navier-Stokes aerodynamics. Computa-
tional aeroelastic response results are obtained, and compared
with piston theory solutions for a variety of flight conditions.
Aeroelastic behavior is studied for 7 � M � 15 at an altitude of
70,000 feet. A parametric study of offsets and wedge angles is
conducted. Piston theory and Euler solutions are fairly close be-
low the flutter boundary, and differences increase with increase in
Mach number, close to the flutter boundary. Differences between
viscous and inviscid aeroelastic behavior can be substantial. The
results presented serve as a partial validation of the CFL3D code
for the hypersonic flight regime.

NOMENCLATURE
a Nondimensional offset between the elastic axis and the mid-

chord
a∞ Speed of sound
b Semi-chord
c Reference length, chord length of double wedge airfoil
CL � CD � CMy Coefficients of lift, drag and moment about the y-

axis
Cp � PT � Cp � NS Piston theory pressure coefficient, and CFD

Navier-Stokes pressure coefficient respectively
f � x � Function describing airfoil surface
h Airfoil vertical displacement at elastic axis

�
Address all correspondence to this author.

Iα Mass moment of inertia about the elastic axis
Kα � Kh Spring constants in pitch and plunge respectively; Kα �

Iαω2
α � Kh � mω2

h
L Lift per unit span
M Free stream Mach number
M � K Generalized mass and stiffness matrices of the structure
m Mass per unit span
MEA Moment per unit span about the elastic axis
nm Number of modes used
p Pressure
Q Generalized force vector for the structure
Qi Generalized force corresponding to mode i
q∞ Dynamic pressure
qi Modal amplitude of mode i
rα Nondimensional radius of gyration
S Surface area of the structure
Sα Static mass moment of wing section about elastic axis
T Kinetic energy of the structure
t Time
th Airfoil half thickness
U Potential energy of the structure
V Free stream velocity
vn Normal velocity of airfoil surface
xα Nondimensional offset between the elastic axis and the

cross-sectional center of gravity
x � y � z Spatial Coordinates
Z � x � y � t � Position of structural surface
α Airfoil pitch displacement about the elastic axis
γ Ratio of specific heats
µm Mass ratio
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ρ Air density
ωα � ωh Natural frequencies of uncoupled pitch and plunge mo-

tions
ω1 � ω2 Natural frequencies of double wedged airfoil
φi Mode shape for mode i

τ Thickness ratio; τ � th
b

˙� � � ¨� � First and second derivatives with respect to time
� � u � � � l Of the upper and lower surface, respectively

INTRODUCTION AND PROBLEM STATEMENT
In recent years, renewed activity in hypersonic flight re-

search has been stimulated by the current need for a low
cost, single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO)
reusable launch vehicle (RLV) and the long term design goal
of incorporating air breathing propulsion devices in this class
of vehicles. The X-33, an example of the former vehicle type,
was a 1/2 scale, fully functional technology demonstrator for the
full scale VentureStar. Another ongoing hypersonic vehicle re-
search program is the NASA Hyper-X experimental vehicle ef-
fort. Other activities are focused on the design of unmanned hy-
personic vehicles that meet the needs of the US Air Force. The
present study is aimed at enhancing the fundamental understand-
ing of the aeroelastic behavior of vehicles that belong to this cat-
egory and operate in a typical hypersonic flight envelope.

Vehicles in this category are based on a lifting body design.
However, stringent minimum-weight requirements imply a de-
gree of fuselage flexibility. Aerodynamic surfaces, needed for
control, are also flexible. Furthermore, to meet the requirement
of a flight profile that spans the Mach number range from 0 to 15,
the vehicle must withstand severe aerodynamic heating. These
factors combine to produce unusual aeroelastic problems that
have received only limited attention in the past. Furthermore,
it is important to emphasize that testing of aeroelastically scaled
wind tunnel models, a conventional practice in subsonic and su-
personic flow, is not feasible in the hypersonic regime. Thus, the
role of aeroelastic simulations is more important for this flight
regime than in any other flight regime.

Previous studies in this area can be separated into several
groups. The first group consists of studies focusing on panel
flutter, which is a localized aeroelastic problem representing a
small portion of the skin on the surface of the hypersonic vehi-
cle. Hypersonic panel flutter has been studied by a number of
researchers, focusing on important effects such as aerodynamic
heating [1], composite [2,3] and nonlinear structural models [4],
and initial panel curvature [5]. A comprehensive review of this
research can be found in a recent survey paper [6]. A funda-
mental question associated with these studies, is whether piston
theory, which has been widely used in the Mach number range,
1.8 � M � 5.0 is an appropriate tool for modeling unsteady aero-
dynamic loads on the surface of a hypersonic vehicle. This was

considered in Ref. [5], where the unsteady pressure coefficient
on the surface of a typical panel, undergoing prescribed oscil-
lations at frequencies representative of a typical panel in hyper-
sonic flow, was computed using: third-order piston theory, an
exact solution of the nonlinear Euler equations, and a numerical
solution of the unsteady Navier-Stokes equations. At a typical
hypersonic Mach number (M=10), results from the third-order
piston theory are within 5% of the exact solution of the Euler
equations. However, a difference of approximately 60% exists
between the Euler solution and the solution based on the Navier-
Stokes equations. This implies that the accurate representation
of the unsteady aerodynamic loading, at certain flight conditions,
will require the solution of the Navier-Stokes equations. Another
implication of this statement is that the heat transfer problem may
have to be coupled with the aeroelastic analysis of a hypersonic
vehicle for certain portions of the flight envelope.

The second group of studies in this area was motivated by
a previous hypersonic vehicle, namely the National Aerospace
Plane (NASP). Representative studies in this category are Refs.
[7-11]. However, some of these studies dealt with the transonic
regime, because it was perceived to be a critical region and the
NASA Langley facilities (the Transonic Dynamics Wind Tunnel)
were appropriate for testing vehicle behavior in this Mach num-
ber range. In Ref. [9], Spain et al. carried out a flutter analysis
of all-moveable NASP-like wings with slab and double wedge
airfoils. They found that using effective shapes for the airfoils
obtained by adding the boundary layer displacement thickness to
the airfoil thickness improved the overall agreement with exper-
iments.

The third group of studies is restricted to recent papers that
deal with the newer hypersonic configurations such as the X-33
or the X-34. Reference [12] considered the X-34 launch vehi-
cle in free flight at M=8.0, and then reinterpreted these results
at different flight conditions using dynamic pressure and altitude
corrections. The aeroelastic instability of a generic hypersonic
vehicle, resembling the X-33, was considered in Ref. [13]. It
was found that at high hypersonic speeds and high altitudes, the
hypersonic vehicle is stable, when piston theory is used to repre-
sent the aerodynamic loads. Sensitivity of the flutter boundaries
to vehicle flexibility and trim state were also considered [13]. In
another reference [14], CFD-based flutter analysis was used for
the aeroelastic analysis of the X-43 configuration, using system
identification based order reduction of the aerodynamic degrees
of freedom. Both the structure and the fluid were discretized
using the finite element approach. It was shown that piston the-
ory and ARMA Euler calculations predicted somewhat similar
results.

From the studies on various hypersonic vehicles (Refs.
[7, 14–16]), one can identify operating envelopes for each ve-
hicle. One can obtain a convenient graphical representation of
operating conditions for this class of vehicles, shown in Fig. 1,
by combining these envelopes.
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Figure 1. OPERATING ENVELOPES FOR SEVERAL MODERN HY-

PERSONIC VEHICLES.

In a recent study [17], the authors of this paper developed
an aeroelastic analysis capability for generic hypersonic vehi-
cles in the Mach number range 0 � 5 � M � 15, using compu-
tational aeroelasticity. The computational tool consisted of the
CFL3D code, developed by NASA Langley, combined with a
finite element model of a generic hypersonic vehicle utilizing
NASTRAN. During the validation process of the analysis [17],
the authors studied the aeroelastic behavior of a two dimensional
double wedge airfoil, operating in the Mach number range of
2 � 0 �

M
� 15 � 0. It was found that the double wedge airfoil is

an excellent vehicle for studying aeroelastic behavior in hyper-
sonic flow. Therefore, the current paper is aimed at studying
several important aspects of computational hypersonic aeroelas-
ticity based on the double wedge airfoil. The specific objectives
of this paper are:

1. Develop an aeroelastic analysis for a double wedge airfoil in
hypersonic flow using third-order piston theory.

2. Determine the time-step requirements for the reliable com-
putation of the unsteady airloads for this particular problem
when using the Euler and Navier-Stokes options of CFL3D.

3. Compare the aeroelastic behavior predicted by the simple
piston theory analysis with refined solutions for the same
problem, using CFL3D, with both Euler and Navier-Stokes
solutions for the unsteady aerodynamic loads.

4. Compare the exact solutions for aeroelastic behavior using
the Navier-Stokes-based unsteady airloads, with approxi-
mate solutions based on an airfoil shape modified by the
presence of a boundary layer.

5. Conduct a parametric study that illustrates the effect of off-
sets between elastic axis, aerodynamic center and wedge an-
gle of the airfoil.

Finally, it is important to note that these objectives not

only enhance our understanding of hypersonic aeroelasticity, but
also make a valuable contribution towards the validation of the
CFL3D code for hypersonic flight conditions.

METHOD OF SOLUTION
An overview of the solution of the computational aeroelas-

ticity problem is shown in Fig. 2. First, the vehicle geometry
is created using CAD software, and from this geometry a mesh
generator is used to create a structured mesh for the flow domain
around the body. In parallel, an unstructured mesh is created for
the finite element model of the structure using the same nodes on
the vehicle surface that were used to generate for the fluid mesh.
Subsequently, the fluid mesh is used to compute the flow around
the rigid body using a CFD solver, while the structural mesh is
used to obtain the free vibration modes of the structure by fi-
nite element analysis. Matching surface nodes in both meshes
by their coordinates, the modal displacements at each fluid node
are set to those of the appropriate node on the structural mesh,
and thus the mode shape data for CFL3D is generated. Using the
flow solution as an initial condition, and the modal information,
an aeroelastic steady state is obtained. Next, the structure is per-
turbed in one or more of its modes by an initial modal velocity
condition, and the transient response of the structure is obtained.
To determine the flutter conditions at a given altitude, aeroelastic
transients are computed at several Mach numbers and the corre-
sponding dynamic pressures. The frequency and damping char-
acteristics of the transient response at each Mach number can be
determined from a moving block approach [18], and the flutter
Mach number associated with this altitude can be estimated by
interpolation.

Euler/Navier-Stokes Aeroelastic Option in CFL3D
The aeroelastic analysis of the double wedge airfoil is car-

ried out using the CFL3D code [19]. The code uses an implicit,
finite-volume algorithm based on upwind-biased spatial differ-
encing to solve the time-dependent Euler and Reynolds-averaged
Navier-Stokes equations. Multigrid and mesh-sequencing are
available for convergence acceleration. The algorithm, which is
based on a cell-centered scheme, uses upwind-differencing based
on either flux-vector splitting or flux-difference splitting, and can
sharply capture shock waves. For applications utilizing the thin-
layer Navier-Stokes equations, different turbulence models are
available. For time-accurate problems using a deforming mesh,
an additional term accounting for the change in cell-volume is
included in the time-discretization of the governing equations.
Since CFL3D is an implicit code using approximate factoriza-
tion, linearization and factorization errors are introduced at ev-
ery time-step. Hence, intermediate calculations referred to as
“subiterations” are used to reduce these errors. Increasing these
subiterations improves the accuracy of the simulation, albeit at
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Figure 2. A FLOW DIAGRAM OF THE COMPUTATIONAL AEROELAS-

TIC SOLUTION PROCEDURE.

increased computational cost.
The aeroelastic approach underlying the CFL3D code is

similar to that described in Refs. [20, 21]. In this formulation,
the equations are derived by assuming that the general motion
w � x � y � t � of the structure is described by a separation of time and
space variables in a finite modal series. The free vibration modes
in this study were obtained from a finite element model of the
vehicle. The displacements on the vehicle are obtained from a
modal series, given next.

Z � x � y � t � �
nm

∑
i � 1

qi � t � φi � x � y � (1)

The equations of motion are based on Lagrange’s equations,

d
dt

�
∂T
∂q̇i ��� ∂T

∂qi � ∂U
∂qi

� Qi � i � 1 � 2 � � � � (2)

The resulting set of equations of motion is

Mq̈ � Kq � Q � q � q̇ � q̈ � � qT ��� q1 q2 � � � � (3)

where the elements of the generalized force vector are given by,

Qi � ρV 2

2
c2 	

S
φi

∆p dS
ρV 2 
 2 c2 (4)

From Eq. (3),

q̈ � � M � 1Kq � M � 1Q (5)

The aeroelastic equations are written in terms of a lin-
ear state-space equation (using a state vector of the form� � � � q̇i � 1 qi q̇i qi � 1 � � � � T ) such that a modified state-transition-
matrix integrator can be used to march the coupled fluid-
structural system forward in time. The fluid forces are coupled
with the structural equations of motion through the generalized
aerodynamic forces. Thus, a time-history of the modal displace-
ments, modal velocities and generalized forces is obtained.

The aeroelastic capabilities of CFL3D, based on this modal
response approach for obtaining the flutter boundary, have been
partially validated for the transonic regime for the first AGARD
standard aeroelastic configuration for dynamic response, Wing
445.6. The results of flutter calculations using Euler aerodynam-
ics are given in Ref. [22] and those using Navier-Stokes aerody-
namics are given in Ref. [23].

Computational Model of the Double Wedge Airfoil
Validation of the CFL3D code for the hypersonic regime has

never been undertaken. Therefore, reliable results for a fairly
simple configuration for which aeroelastic stability and response
results could be generated independently, were essential. A typ-
ical cross-section based on the double wedge airfoil, shown in
Figs. 3 and 4, met these requirements. Generating results for this
configuration using Euler and Navier-Stokes unsteady aerody-
namic loads, and comparing them with results obtained using an
independently developed aeroelastic code based on third-order
piston theory, provides a reliable means for validating CFL3D in
the hypersonic regime.

The Euler and Navier-Stokes computations are carried out
using a 225 
 65 C-grid with 225 points around the wing and
its wake (145 points wrapped around the airfoil itself), and 65
points extending radially outward from the airfoil surface. The
computational domain extends one chord-length upstream and
six chord lengths downstream, and one chord length to the up-
per and lower boundaries. For the Navier-Stokes simulations,
the Spalart-Allmaras turbulence model was used, along with an
adiabatic wall temperature condition. The double wedge airfoil
and a portion of the surrounding computational grid are shown
in Fig. 3.

Aeroelastic Model for a Double Wedge Airfoil Using
Higher Order Piston Theory

Piston theory is an inviscid unsteady aerodynamic the-
ory, used extensively in supersonic and hypersonic aeroelasticity,
which provides a point-function relationship between the local
pressure on the surface of the vehicle and the component of fluid
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velocity normal to the moving surface [24, 25]. The derivation
utilizes the isentropic ”simple wave” expression for the pressure
on the surface of a moving piston,

p � x � t �
p∞

�
�

1 � γ � 1
2

vn

a∞ �
2γ�

γ � 1 �
(6)

where

vn � ∂Z � x � t �
∂t � V

∂Z � x � t �
∂x

(7)

The expression for piston theory is based on a binomial ex-
pansion of Eq. (6), where the order of the expansion is deter-

mined by the ratio of
vn

a∞
. Reference [25] suggested a third-order

expansion, since it produced the smallest error of the various or-
ders of expansion used when compared to the limiting values of
pressure, namely the ”simple wave” and ”shock expansion” so-
lutions. The third-order expansion of Eq. (6) yields

p � x � t � � p∞ � p∞

�
γ

vn

a∞ � γ � γ � 1 �
4

�
vn

a∞ � 2 � γ � γ � 1 �
12

�
vn

a∞ � 3 �
(8)

An aeroelastic analysis for a typical cross-section for a dou-
ble wedge airfoil was developed using Eq. (8) for the unsteady
pressure loading. A typical cross-section, with the usual pitch
and plunge degrees of freedom, shown in Fig. 4, was used to
obtain the equations of motion from Lagrange’s equations.

mḧ � Sαα̈ � Khh � � L � t �

Sαḧ � Iαα̈ � Kαα � MEA � t �
(9)

From Fig. 4, it is evident that for small displacements,

Z � x � t � � ��� h � t � � � x � ba � α � t ��� � f � x � (10)

and

vn � u � �	� ḣ � � x � ba � α̇ � � V 
 � α � ∂ f � x �
∂x �

vn � l � � ḣ � � x � ba � α̇ � � V 
 � α � ∂ f � x �
∂x � (11)

where

∂ fu � x �
∂x � τ : � b � x � 0

∂ fu � x �
∂x � � τ : 0 �

x
�

b

∂ fl � x �
∂x � � τ : � b

�
x

� 0

∂ fl � x �
∂x � τ : 0 � x � b

(12)

From Eqs. (8), (11), and (12) the unsteady pressure distribution
was determined. The unsteady lift and moment due to this pres-
sure distribution was determined from

L � t � � � b� b � pl � x � t � � pu � x � t � � dx

MEA � t � � � � b� b � x � ba � � pl � x � t � � pu � x � t � � dx

(13)
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The unsteady lift is given by

L � t � � L1 � t � � L2 � t � � L3 � t � (14)

where,

L1 � t � � 4P∞γMb � ḣ
V � ba α̇

V � α �
L2 � t � � � P∞γ � γ � 1 � M2b2τ � α̇

V �
L3 � t � � 1

3 P∞γ � γ � 1 � M3b ��� ḣ
V � ba α̇

V � α �� � ḣ
V � ba α̇

V � α � 2 � 3τ2 � � b α̇
V � 2 � �

(15)

Note that L1 � t � , L2 � t � , and L3 � t � represent the first, second, and
third-order piston theory lift components respectively. Similarly,
the unsteady moment is given by,

MEA � t � � M1 � t � � M2 � t � � M3 � t � (16)

where

M1 � t � � 4P∞γMb2 � a ḣ
V � � b

3 � ba2 � α̇
V � aα �

M2 � t � � P∞γ � γ � 1 � M2b2τ � ḣ
V � 2ba α̇

V � α �
M3 � t � � � 1

3 P∞γ � γ � 1 � M3b2 � 1
5 � b α̇

V � 3

� a � ḣ
V � ba α̇

V � α � � � ḣ
V � ba α̇

V � α � 2 � 3τ2 �
� b α̇

V

� � ḣ
V � ba α̇

V � α � 2 � τ2

� ba α̇
V � ḣ

V � ba α̇
V � α ��� �

(17)

Again, M1 � t � , M2 � t � , and M3 � t � represent the first, second, and
third-order piston theory moment components respectively.

For comparison with CFL3D, it is convenient to represent
Eq. (9) in terms generalized coordinates and forces. Therefore, a
normal mode transformation is used such that:


 h � t �
α � t � � � � φ1 φ2 � 
 q1 � t �

q2 � t � � (18)

Substituting Eq. (18) into Eq. (9), and premultiplying by the
transpose of the modal matrix yields


 q̈1 � t �
q̈2 � t � � � � φ1 φ2 � T 
 L � t �

MEA � t � � � �
ω2

1 0
0 ω2

2 	 
 q1 � t �
q2 � t � �

(19)
for mass normalized modes.

Note that the modal amplitudes are coupled through the gen-
eralized forces. Equation (19) was solved using the subroutine
ODE45 in MATLAB.

Calculation of Effective Shape of the Double Wedge
Airfoil

As indicated in Ref. [26], the thick boundary layer in hy-
personic flow can exert a major displacement effect on the outer
inviscid flow, causing a given body shape to appear much thicker.
This influences the surface pressure distribution, and it also ef-
fects vehicle aeroelastic stability. To incorporate this effect in
an approximate manner, a static boundary layer displacement
thickness is used in conjunction with piston theory. A similar
approach was considered in Ref. [9], where a flat-plate bound-
ary layer thickness was used. In order to improve the level of
accuracy in the displacement thickness, the steady pressure dis-
tribution calculated from a CFD based Navier-Stokes solution is
used to generate the effective airfoil shape. The steady compo-
nent of the piston theory pressure can be obtained from Eq.(8)
by neglecting all time dependent terms. For zero angle of attack,
this is given by:

Cp � PT � x � � p∞

q∞

 γM

dZ
dx � γ � γ � 1 �

4
M2 dZ

dx

2 � γ � γ � 1 �
12

M3 dZ
dx

3 �
(20)

Equating the steady CFD Navier-Stokes coefficient of pressure

with Eq.(20) yields a third order polynomial for
dZ
dx

,

Cp � PT � x � � Cp � NS � x � � 0 (21)

Solving this equation at each surface grid point results in two
complex roots and one real root, which represents the slope of the
effective airfoil shape at that grid point. The effective shape can
then be obtained by integrating the slope along the length of the
airfoil.

RESULTS AND DISCUSSION
The results presented in this section provide a validation of

CFL3D for the hypersonic regime, and also contribute to the fun-
damental understanding of hypersonic aeroelasticity. By com-
paring results for Euler, Navier-Stokes and piston theory, one can
identify the importance of viscosity, and the effectiveness of pis-
ton theory in approximating the aeroelastic behavior of a double
wedge airfoil in inviscid flow.

The double wedge airfoil is characterized by the following
parameters: th 
 b � 0 � 025; m � 51 � 833 kg/m; ωh � 50 rad/sec;
and ωα � 125 rad/sec. Figure 5 depicts the flutter boundaries of
a double wedge airfoil at various altitudes, as a function of the
offset a, for the operating envelope of a typical hypersonic ve-
hicle, at zero angle of attack, based on piston theory. The mass
ratios for the various altitudes are given in Table 1. Two dif-
ferent configurations of the double wedge airfoil, given in Table
2, were selected for calculations using CFL3D. For flight in the
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Mach number range of 5-15, the height selected for the flutter
calculations of the two configurations was 70,000 feet. At this
altitude, the flutter boundaries are at M=9.21 for configuration A
and at M=14.55 for configuration B. Hence, appropriate compu-
tational points selected for this study were Mach numbers 7, 10
and 15 at 70,000 feet, with Reynolds numbers of 5 � 058 
 106,
7 � 226 
 106 and 1 � 084 
 107, respectively.

a
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h
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m
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Figure 5. FLUTTER BOUNDARIES OF A DOUBLE WEDGE AIRFOIL

AT ZERO ANGLE OF ATTACK, WITH xα � 0 � 2.

Table 1. MASS RATIOS AT VARIOUS ALTITUDES.

Altitude (ft) Mass Ratio (µm)

0 13.47

5,000 15 � 63

50,000 88 � 37

70,000 232.68

100,000 942 � 60

Selection of Time-step Size
The time-step required for accurate prediction of the aeroe-

lastic response is important in computational aeroelasticity stud-
ies. However, selection of an extremely small time-step also
requires significant computational resources. Therefore the op-
timal time-step, determined by a trade-off between accuracy
and practical feasibility, was established by a concise numerical
study.

Table 2. NONDIMENSIONAL GEOMETRIC AND STRUCTURAL PA-

RAMETERS.

Parameter Configuration A Configuration B
ωh

ωα
0 � 4 0 � 4

xα 0 � 2 0 � 2

rα 0 � 5 0 � 5

a 0 � 1 � 0 � 2

In an aeroelastic system with a linear structural operator, the
time-step limitation is mainly governed by the unsteady fluid cal-
culations. Therefore, a simulation based on prescribed motion
was used to select an appropriate time-step size for each of the
flight conditions. To determine the proper step size, the unsteady
lift, moment and drag coefficients (CL � t � , CMy � t � and CD � t � ), due
to prescribed motion were computed, and the time-step selected
was based on the convergence of these unsteady aerodynamic
coefficients. In studying the behavior of these coefficients while
varying the step size, it was found that the lift coefficient CL has
the smallest degree of sensitivity to the time-step. For aeroelas-
tic simulations, the lift is the dominant quantity (since drag does
not appear in the aeroelastic calculations for the double wedge
airfoil). Therefore, it might be expected that the time-step size
should be determined primarily based on the behavior of the CL

curves. For the double wedge airfoil geometry, the moment due
to lift (CL � xα) has the same order of magnitude as the moment
coefficient, and hence the accuracy of CMy is comparable in im-
portance to the accuracy in CL.

For simulations using Euler aerodynamics, the responses
were found to be independent of time-step size when the time-
step was smaller than 0.001 sec. To identify the maximum time-
step for a viscous aeroelastic simulation, a maximum time-step
for a viscous forced-motion simulation was found. This value
set an upper limit for the time-step size used in the aeroelastic
simulations. Simulations were carried out at 10, 20 and 30 Hz,
with a maximum rotation of 1

�
and 2

�
, at various altitudes. Re-

sults from simulations carried out at 70,000 feet and Mach 10,
with maximum rotation of 2

�
at 20 Hz, are shown in Fig.6. In an

aeroelastic simulation, the phase difference between the oscilla-
tions in CL � t � and CMy � t � plays a very important role in the stabil-
ity of the system. A phase difference in the oscillations in CL � t � ,
CMy � t � and CD � t � in a forced-motion simulation would lead to
incorrect aeroelastic behavior at those flight conditions. Hence,
when viscosity is considered, CD is a better indicator of conver-
gence than CL, even though CD plays no role in this particular
aeroelastic problem. This is because CD is the best indicator of a
phase difference between the various coefficients in a prescribed
motion simulation. It was found that the errors in magnitude and
phase were not strongly affected by the frequency or magnitude
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of the oscillations at a given altitude. The results of this study are
summarized in Table 3.
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Figure 6. RESULTS FOR FORCED MOTION AT MACH 10 AND 70,000

FEET, WITH θmax � 2
�

AT 20 HZ.

Table 3. SUGGESTED TIME-STEP SIZES AND CORRESPONDING

NUMBER OF SUBITERATIONS FOR VISCOUS AEROELASTIC SIMU-

LATIONS.

Altitude (ft) Mach no. Time-step (sec) Subiterations

50,000 5.0 0.001 10

70,000 10.0 0.0003 40

100,000 10.0 0.0001 40

Aeroelastic Behavior of the Double Wedge Airfoil
The results for the aeroelastic response of the double wedge

airfoil with 2.86
�
wedge angle using different aerodynamic mod-

els, is shown in Figs. 7-10. In some of the figures, time histories
end abruptly, due to the inability of the mesh deformation algo-
rithm in CFL3D to track the increasingly large displacements of
an unstable system. Figure 7 shows the responses of configura-
tion A at M=7.0. From this figure, it is evident that while piston

theory predicts a stable system, both the Euler and Navier-Stokes
solutions are unstable. This implies that both Euler and Navier-
Stokes aerodynamic models produce aeroelastic results that are
more conservative than piston theory for this particular case.
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Figure 7. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE AIR-

FOIL, AT M=7.0 AND AN ALTITUDE OF 70,000 FEET, CONFIGURA-

TION A.

For configuration B, Figs. 8-10 indicate that differences in
system responses from the three aerodynamic models are minor
at Mach numbers well below the piston theory flutter boundary,
but the differences increase with Mach number. At M � 7 � 0,
all three aerodynamic models show comparable responses. Fur-
thermore, when the Mach number is increased to M � 10 � 0, the
Navier-Stokes response is near critical, while the other two are
more stable. However, Euler and piston theory responses are still
comparable. When the Mach number is increased to M � 15 � 0,
all three aerodynamic models predict unstable responses, with
different levels of damping. The increases in differences empha-
size the important role of aerodynamic nonlinearities and viscos-
ity with increasing Mach numbers.

These results also illustrate that inspection of the aeroelastic
response curves provides only a partial answer. To better under-
stand the differences between aeroelastic results based on pis-
ton theory, Euler and Navier-Stokes solutions, actual aeroelastic
stability boundaries based on system damping need to be estab-
lished.

The effect of increasing the wedge angle (or thickness) of
the airfoil is depicted in Figs. 11 and 12, at M=10.0 and 70,000
feet. For a wedge angle of 4

�
, it is shown in Fig. 11 that using

Navier-Stokes aerodynamics produces an unstable system, while
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Figure 8. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE AIR-

FOIL, AT M=7.0 AND AN ALTITUDE OF 70,000 FEET, CONFIGURA-

TION B.
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Figure 9. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE AIR-

FOIL, AT M=10.0 AND AN ALTITUDE OF 70,000 FEET, CONFIGURA-

TION B.

the other two aerodynamic models produce a lightly damped re-
sponse. When the wedge angle is increased to 6

�
, as shown in

Fig. 12, both Euler and Navier-Stokes aerodynamics predict a
very unstable system, while the results based on piston theory
still show a stable system.

The effective shapes of the double wedge airfoil with 2.86
�
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Figure 10. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE

AIRFOIL, AT M=15.0 AND AN ALTITUDE OF 70,000 FEET, CONFIG-

URATION B.
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Figure 11. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE

AIRFOIL, AT M=10.0 AND AN ALTITUDE OF 70,000 FEET, CONFIG-

URATION B, WEDGE ANGLE=4
�
.

wedge angle, modified due to the presence of the boundary layer
at Mach 5.0, 10.0 and 15.0, are shown in Fig. 13. The effective
geometries are calculated from steady CFD Navier-Stokes pres-
sure data, as described previously. Results using the effective air-
foil shape are shown in Figs. 14-16, also at M=10.0 and 70,000
feet. Figure 14 compares the results for the double wedge air-

9 Copyright  2002 by ASME



Time(sec)

A
m

pl
itu

de
,M

od
e

2

0 0.1 0.2 0.3 0.4 0.5 0.6

-4

-2

0

2

A
m

pl
itu

de
,M

od
e

1

0 0.1 0.2 0.3 0.4 0.5 0.6
-4

-2

0

2

4

6

8

Euler
Navier-Stokes
Piston Theory

Figure 12. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE

AIRFOIL, AT M=10.0 AND AN ALTITUDE OF 70,000 FEET, CONFIG-

URATION B, WEDGE ANGLE=6
�
.

x-coordinate (feet)

th
ic

kn
es

s
(f

ee
t)

-3 -2 -1 0 1 2 3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

doublewedgeairfoil, 2.86o

Effectiveshape, Mach 7.0
Effectiveshape, Mach 10.0
Effectiveshape, Mach 15.0
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WITH 2.86
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foil with 2.86
�

wedge angle (standard geometry), while Fig. 15
compares the results for a 4

�
wedge angle, and Fig. 16 shows the

results for a 6
�
wedge angle. In all three cases, the Navier-Stokes

model predicts larger modal amplitudes than piston theory with
the effective shape. Furthermore, at the smallest wedge angle,
the piston theory model has a higher level of damping than the
Navier-Stokes model. When the wedge angle is increased to 4

�
,

the Navier-Stokes model predicts a response with a beat phe-
nomenon, therefore it is difficult to identify the degree of damp-
ing. However, the piston theory model predicts stable system be-
havior. At the 6

�
wedge angle, both models predict unstable be-

havior. It should also be noted that at the 6
�
wedge angle, piston

theory without the effective shape predicted a stable response.
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Figure 14. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE

AIRFOIL, AT M=10.0 AND AN ALTITUDE OF 70,000 FEET, CON-

FIGURATION B, WEDGE ANGLE=2.86
�
. COMPARISON OF NAVIER-

STOKES RESULTS WITH EFFECTIVE SHAPE USING PISTON THE-

ORY.

Due to these differences, and limitation of results generated,
it is apparent that more study is needed to fully understand the
capability of piston theory with an effective shape in accurately
capturing viscous effects.

CONCLUSIONS
Based on the limited amount of numerical results presented

in this paper, the following conclusions can be stated.

1. The time steps to be used in computational aeroelastic-
ity studies are strongly dependent on the unsteady aero-
dynamic model used. Using a viscous flow based on the
Navier-Stokes equations requires substantially smaller time-
step sizes than those used for an Euler solution.

2. Aeroelastic behavior is sensitive to the unsteady aerody-
namic model used. For the cases considered, results based
on piston theory are more stable than those from Euler and
Navier-Stokes based aerodynamic loads.
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Figure 15. AEROELASTIC RESULTS FOR THE DOUBLE WEDGE

AIRFOIL, AT M=10.0 AND AN ALTITUDE OF 70,000 FEET, CONFIG-

URATION B, WEDGE ANGLE=4
�
. COMPARISON OF NAVIER-STOKES

RESULTS WITH EFFECTIVE SHAPE USING PISTON THEORY.

3. Aeroelastic response results using third order piston theory
and exact Euler solutions are fairly close, and predict similar
response.

4. Airfoil shapes modified by the presence of a static boundary
layer produce an aeroelastic response that differs substan-
tially from that based on the solution of the Navier-Stokes
equations.

5. The results presented can be considered to provide a par-
tial validation of the CFL3D code for the hypersonic flow
regime.
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