Lecture 18

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 18 Class Lecture 23–Tuesday 4/16/2013

- Catalytic Mechanisms
- Data Analysis
- Chemical Vapor Deposition (CVD)

Catalytic Mechanisms

(a) The initial rate of reaction is shown below

Catalytic Mechanisms

 $C \bullet S \xrightarrow{\longrightarrow} C + S \qquad -r_A = r_{DC} = k_{DC} [C_{C \bullet S} - P_C C_V K_C] \Longrightarrow C_{C \bullet S} = K_C P_C C_V$

Where $K_A = 4$ atm⁻¹ and $K_C = 6$ atm⁻¹

- 1) At what is the ratio of sites with A adsorbed to those sites with C adsorbed when the conversion is 50%?
- 2) What is the conversion when the sites with A adsorbed are equal to those with C adsorbed?

Catalytic Mechanisms

$$2A \longrightarrow B + C$$

$$A \longrightarrow \frac{B}{2} + \frac{C}{2}$$

$$K_A = 4 \text{ and } K_C = 6$$

Ratio of site concentrations

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \frac{K_A P_A C_V}{K_C P_C C_V} = \frac{K_A P_A}{K_C P_C}$$

$$P_A = P_{A0} (1 - X) / (1 + \varepsilon X)$$

$$P_C = P_{A0} \frac{X}{2(1 + \varepsilon X)}$$

$$\frac{K_A P_{A0} \left(\frac{1 - X}{1 + \varepsilon X}\right) \frac{P}{P_0}}{K_C P_0} = 2 \frac{K_A (1 - X)}{K_C X}$$

Catalytic Mechanisms 1) At X = 0.5 $\frac{C_{A \bullet S}}{C_{C \bullet S}} = \sim \frac{(2)(4)(1-0.5)}{6(0.5)} = 1.33$

2) At an equal concentrations of A and C sites, the conversion will be

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = 1 = \frac{2K_A(1-X)}{K_C X}, \text{ then } X = \frac{2K_A}{K_C + 2K_A} = \frac{(2)(4)}{6 + (2)(4)} = \frac{8}{14}$$
$$X = 0.57$$

Dimethyl Either

Initially water does not exit the reactor the same as DME because Which of the following best describes the data

- A There is more DME than water.
- **B** Steady state has been reached.
- **C** Water reacts with ME.
- **D** Water is adsorbed on the surface.

Chemical Reaction Engineering in the Electronics Industry

Chemical Reaction Engineering in the Electronics Industry

<u>ChE 342</u>

Czochralski Crystal Growth – Heat Transfer

Doping of n/p junction – Diffusion

<u>ChE 344</u>

Chemical Vapor Deposition (Catalysis Analogy)

Photo Resist Formation

Photo Resist Dissolution

Etching

The 5 steps

1. Postulate Mechanism

(sometimes first includes a gas phase reaction (then adsorption, surface reaction and desorption)

- 2. Postulate Rate Limiting Step
- 3. Evaluate Parameters in Terms of Measured Variables
- 4. Surface Area Balance
- 5. Evaluate Rate Law Parameters

Chemical Reaction Engineering in the Electronics Industry

Figure 10-21 CVD surface reaction step for Germanium.

2) Rate Limiting Step
$$r_{Dep} = r_S = k_S f_{SiH_2}$$

3) Express f_i in terms of P_i $\frac{r_{AD}}{k_A} \approx 0$

$$\mathbf{f}_{\mathrm{SiH}_2} = \mathbf{K}_{\mathrm{SiH}_2} \mathbf{f}_{\mathrm{V}} \mathbf{P}_{\mathrm{SiH}_2}$$

4) Area Balance

$$1 = f_V + f_{SiH_2} = f_V + K_{SiH_2}P_{SiH_2}f_V$$

4) Area Balance

$$1 = f_V + f_{SiH_2} = f_V + K_{SiH_2}P_{SiH_2}f_V$$

 $f_V = \frac{1}{1 + K_{SiH_2}P_{SiH_2}}$

5) Combine $r_{Dep} = \frac{k_S K_{SiH_2} P_{SiH_2}}{1 + K_{SiH_2} P_{SiH_2}}$

Homogeneous Reaction

$$\operatorname{SiH}_{4} \xrightarrow{\longrightarrow} \operatorname{SiH}_{2} + \operatorname{H}_{2} \qquad -r_{\operatorname{SiH}_{4}} = k_{\operatorname{SiH}_{4}} \left[P_{\operatorname{SiH}_{4}} - \frac{P_{\operatorname{H}_{2}}P_{\operatorname{SiH}_{2}}}{K_{\operatorname{P}}} \right]$$

$$\frac{-\mathbf{r}_{\mathrm{SiH}_{4}}}{\mathbf{k}_{\mathrm{SiH}_{4}}} \approx 0 \Longrightarrow \mathbf{P}_{\mathrm{SiH}_{2}} = \frac{\mathbf{K}_{\mathrm{P}}\mathbf{P}_{\mathrm{SiH}_{2}}}{\mathbf{P}_{\mathrm{H}_{2}}}$$

$$r_{\text{Dep}} = \frac{k_{\text{S}} K_{\text{P}} K_{\text{SiH}_{2}} P_{\text{SiH}_{4}}}{P_{\text{H}_{2}} + K_{\text{SiH}_{2}} K_{\text{P}} P_{\text{SiH}_{4}}} = \frac{k_{1} P_{\text{SiH}_{4}}}{P_{\text{H}_{2}} + K_{1} P_{\text{SiH}_{4}}}$$

End of Web Lecture 18 End of Class Lecture 23