Lecture 19

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 19 Class Lecture 17–Tuesday 3/19/2013

Energy Balance Fundamentals

Adiabatic reactors

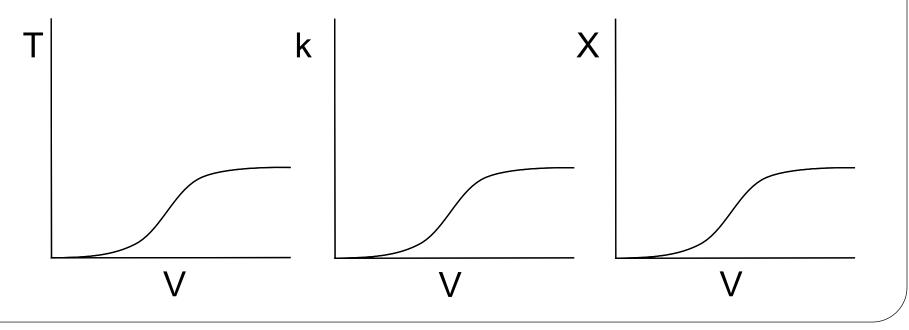
Today's Lecture

3

Energy Balance, Rationale and Overview

Let's calculate the volume necessary to achieve a conversion, X, in a PFR for a first-order, exothermic and adiabatic reaction.

The temperature profile might look something like this:



Energy Balance, Rationale and Overview Mole Balance: $\underline{dX} = \underline{-r_A}$ $dV = F_{40}$ $r_{A} = -k_{i} \exp \left| \frac{E}{R} \left(\frac{1}{T_{1}} - \frac{1}{T} \right) \right| C_{A}$ **Rate Law:** Stoichiometry: $C_A = C_{A0}(1-X)$ $\frac{dX}{dV} = \frac{k_i \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{F_{A0}}C_{A0}(1 - X)$ **Combine:**

Energy Balance, Rationale and Overview $\frac{dX}{dV} = \frac{k_i \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{F_{A0}}C_{A0}(1-X)$

We cannot solve this equation because we don't have X either as a function of V or T.

We need another equation. That equation is:

The Energy Balance

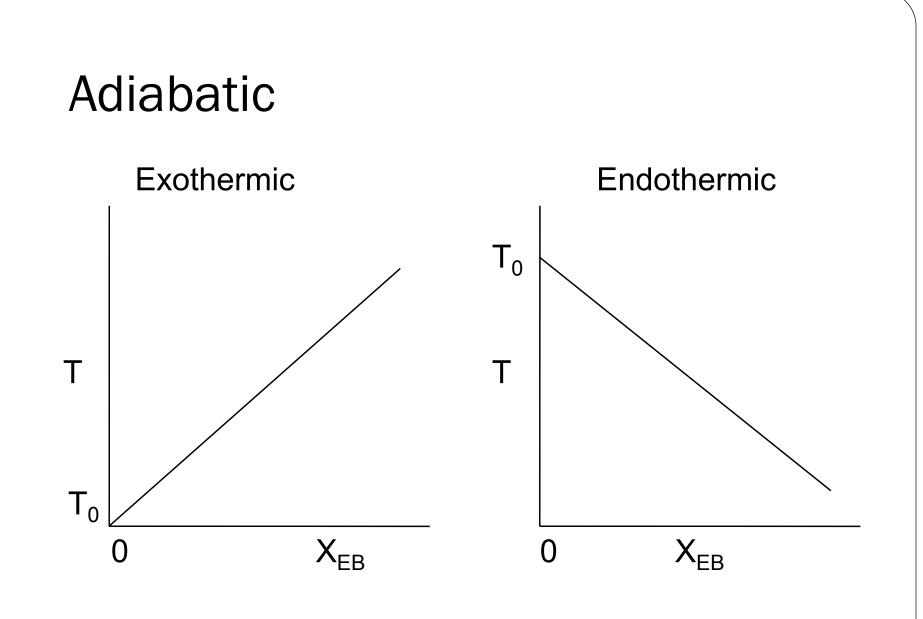
1. Adiabatic CSTR, PFR, Batch or PBR

$$\dot{k}_{s} = 0$$

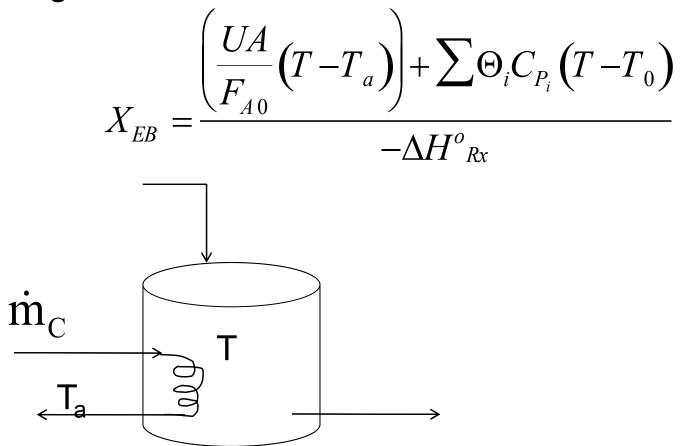
$$X_{EB} = \frac{\sum \Theta_i C_{P_i} \left(T - T_0 \right)}{-\Delta H^o_{Rx}}$$

$$X = \frac{\tilde{C}_{P_A} \left(T - T_0 \right)}{-\Delta H_{R_X}}$$

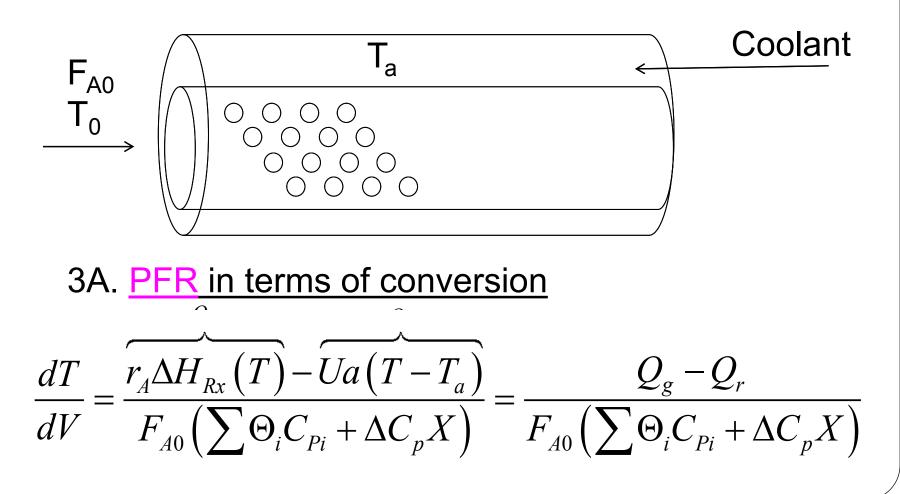
$$T = T_0 + \frac{\left(-\Delta H^o_{Rx}\right)X_{EB}}{\sum \Theta_i C_{P_i}}$$



2. <u>CSTR with heat exchange</u>: UA(T_a -T) and a large coolant flow rate



3. PFR/PBR with heat exchange



3B. PBR in terms of conversion

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{F_{A0} \left(\sum \Theta_i C_{Pi} + \Delta C_p X \right)}$$

3C. PBR in terms of molar flow rates

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{\sum F_i C_{P_i}}$$

User Friendly Equations Relate T and X or F_i 3D. <u>PFR in terms of molar flow rates</u>

$$\frac{dT}{dV} = \frac{r_A \Delta H_{Rx}(T) - Ua(T - T_a)}{\sum F_i C_{P_i}} = \frac{Q_g - Q_r}{\sum F_i C_{P_i}}$$

4. Batch

$$\frac{dT}{dt} = \frac{\left(r_A V\right)\left(\Delta H_{Rx}\right) - UA\left(T - T_a\right)}{\sum N_i C_{P_i}}$$

User Friendly Equations Relate T and X or F_i 5. <u>For Semibatch or unsteady CSTR</u>

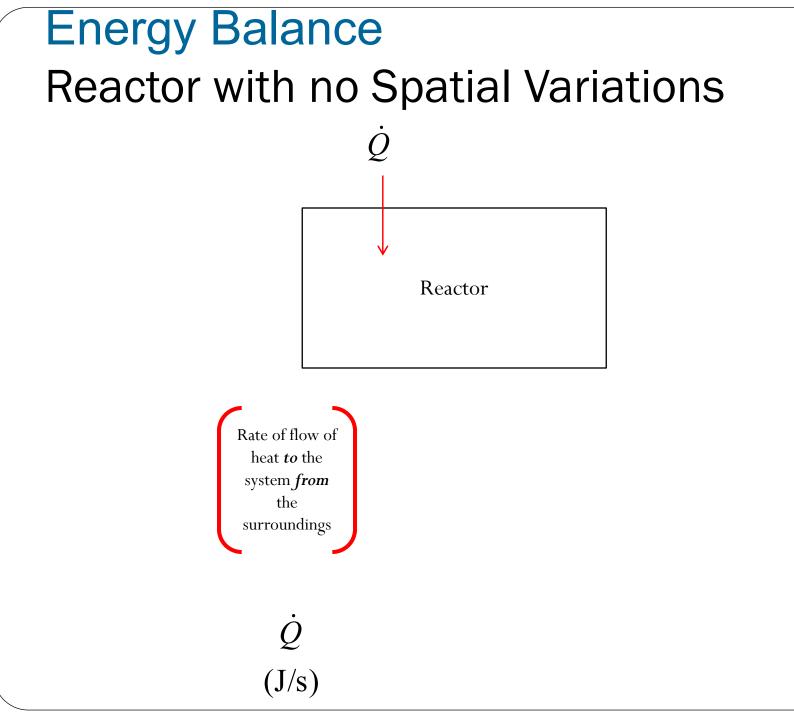
6. For multiple reactions in a PFR (q reactions and m species)

$$\frac{dT}{dV} = \frac{\sum_{i=1}^{q} r_{ij} \Delta H_{Rx_{ij}} - Ua(T - T_a)}{\sum_{j=1}^{m} F_i C_{Pj}}$$

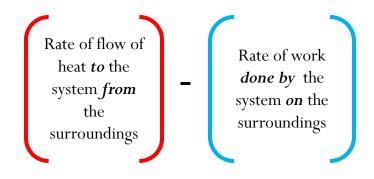
Let's look where these User Friendly Equations came from.

Energy Balance Reactor with no Spatial Variations

Reactor	

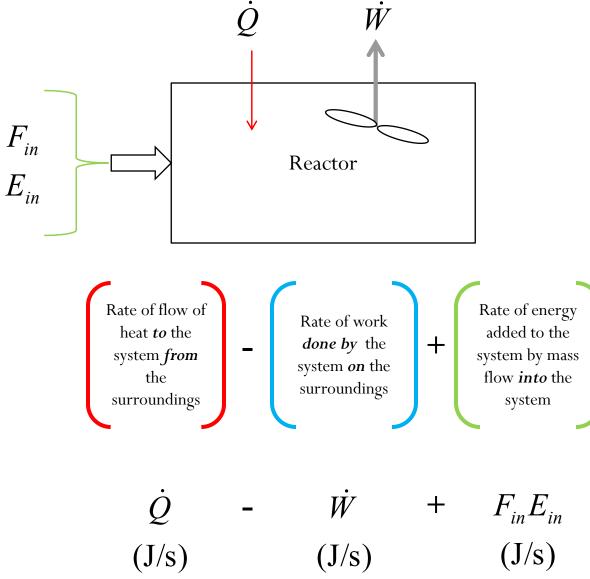


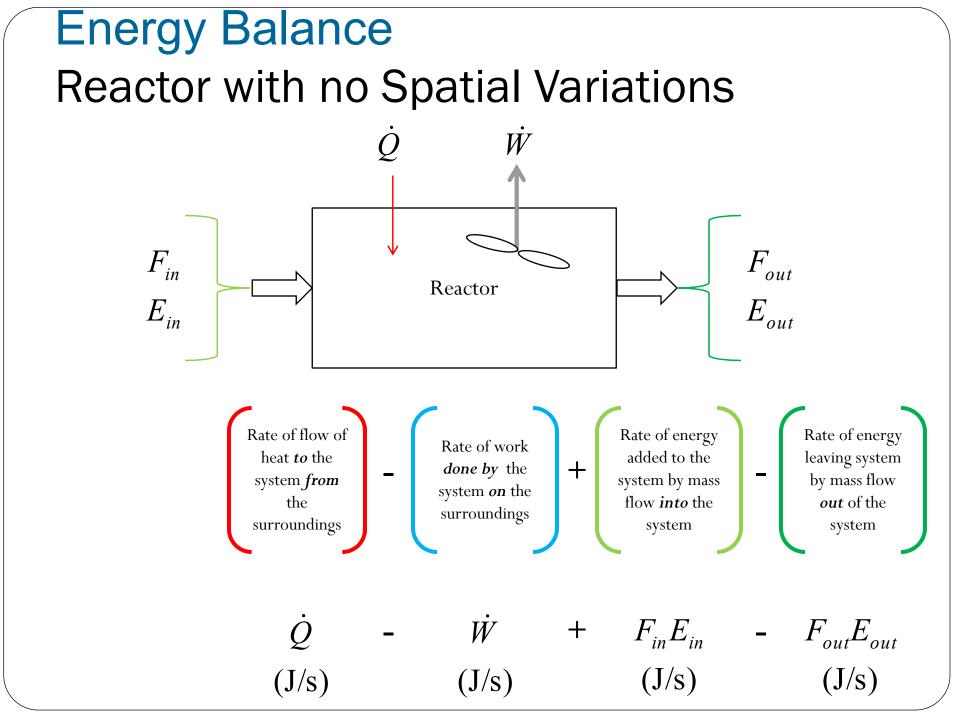
Energy Balance Reactor with no Spatial Variations \dot{Q} \dot{W} \downarrow \dot{Q} \dot{W} \downarrow \dot{Q} \dot{W} \downarrow \dot{W} Reactor

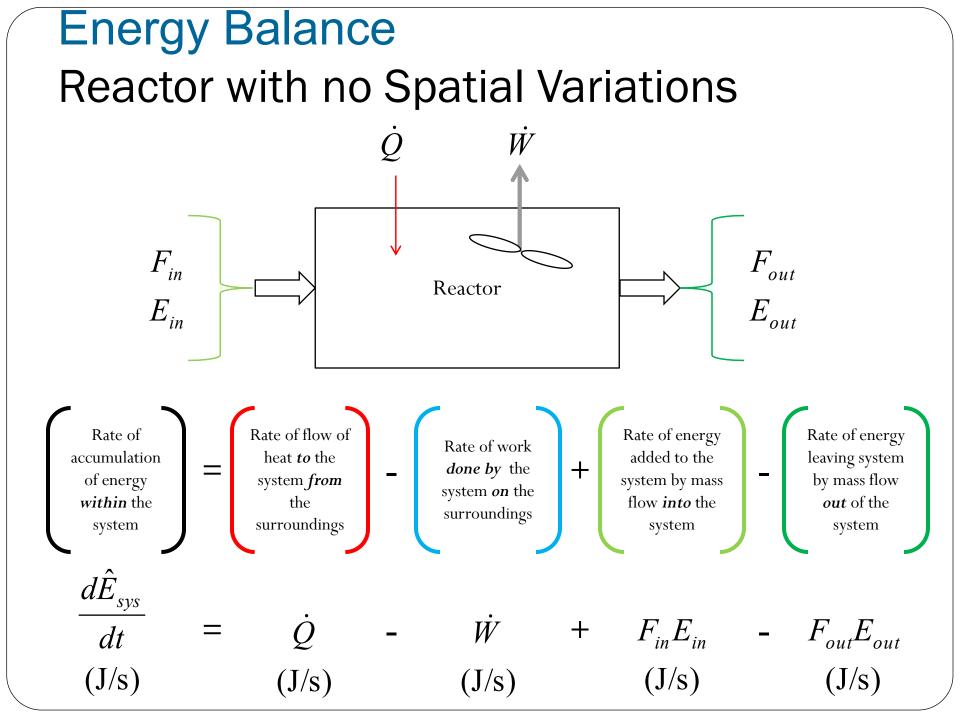


Ŵ (J/s)(J/s)

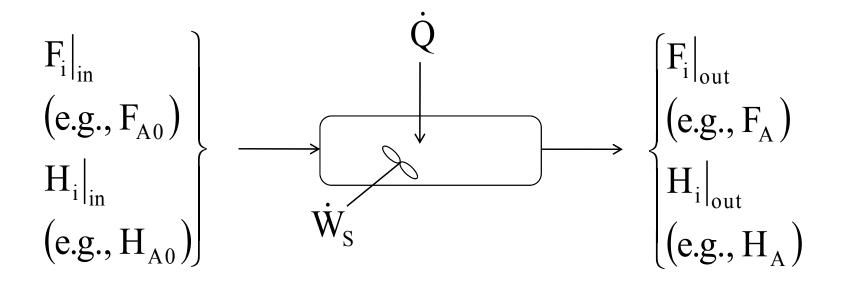
Energy Balance Reactor with no Spatial Variations







Energy Balance



Energy Balance on an open system: schematic.

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0} E_{i0} \Big|_{in} - \sum F_{i} E_{i} \Big|_{out} = \frac{dE_{system}}{dt} (1)$$

OK folks, here is what we are going to do to put the above equation into a usable form.

- 1. Replace U_i by U_i=H_i-PV_i
- 2. Express H_i in terms of heat capacities
- 3. Express F_i in terms of either conversion or rates of reaction
- 4. Define ΔH_{Rx}
- 5. Define ΔC_P

6. Manipulate so that the overall energy balance is in terms of the User Friendly Equations.

Intro to Heat Effects

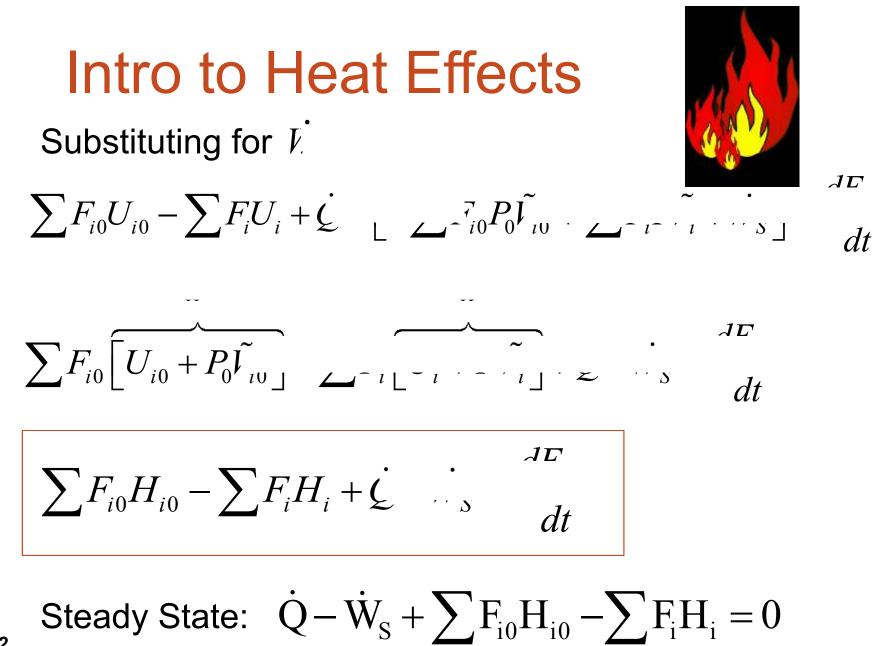
Assumptions:

 $E_i = U_i + P \dot{E}_i^{=0} + K \dot{E}_i^{=0}$ Other energies small compared to internal $\dot{W} =$ flow work + shaft work

flow work =
$$-\sum F_{i0}P_0\widetilde{V}_{i0} + \sum F_iP\widetilde{V}_i \qquad \left(\widetilde{V} = \frac{m^3}{mol}\right)$$

Recall: $H_i = U_i + P\tilde{V}_i$

(2)



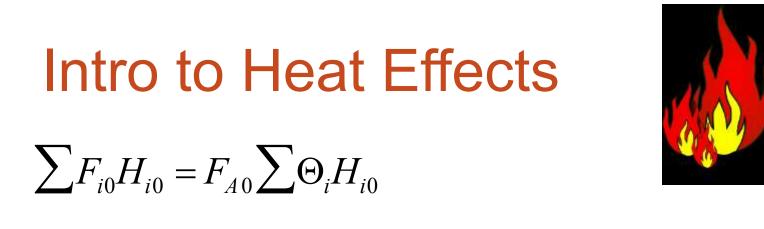
Intro to Heat Effects

General Energy Balance :

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0}H_{i0} - \sum F_{i}H_{i} = \frac{dE_{system}}{dt}$$

For Steady State Operation:

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0}H_{i0} - \sum F_{i}H_{i} = 0$$



 $\sum F_i H_i = F_{A0} \sum \left(\Theta_i + \upsilon_i X\right) H_i = F_{A0} \sum \Theta_i H_i + F_{A0} X \sum \upsilon_i H_i$

 $\dot{\mathcal{L}} \quad \therefore \quad \sum_{AU} \sum_{AU} \Theta_i \left(H_{i0} - H_i \right) + F_{A0} X \Delta H_{Rx} \right) = 0$

Intro to Heat Effects

For No Phase Changes

 $H_{i}(T) = H_{i}^{0}(T_{R}) + \int_{T_{R}}^{T} C_{Pi} dT$ $\hookrightarrow \quad \text{Enthalpy of formation at temperature } T_{R}$ **Constant Heat Capacities**

 $\rightarrow H_i(T) = H_i^0(T_R) + C_{Pi}(T - T_R)$

$$H_{i0} - H_i = C_{Pi} (T - T_0)$$

$$\sum v_i H_i = \sum v_i H_i^0 + \sum v_i C_{Pi} (T - T_R)$$

Heat of reaction at temperature

Intro to Heat Effects

$$\sum v_i H_i = \sum v_i H_i^0 + \sum v_i C_{Pi} (T - T_R)$$

$$\Delta H_R(T) = \Delta H_R^o(T_R) + \Delta \hat{C}_P (T - T_R)$$

$$\sum v_i \hat{C}_{Pi} = \Delta \hat{C}_P = \frac{d}{a} \hat{C}_{PD} + \frac{c}{a} \hat{C}_{PC} - \frac{b}{a} \hat{C}_{PB} - \hat{C}_{PA}$$
Substituting back into the Energy Balance

$$\dot{\zeta} = \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-P(--K)^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-A0^{-1}} \sum_{s=-K(-K)^{-1}} \sum_{s$$

Intro to Heat Effects

$$\Delta H_{Rx} = \frac{d}{a}H_{D} + \frac{c}{a}H_{C} - \frac{b}{a}H_{B} - H_{A}$$

$$\Delta C_{P} = \frac{d}{a}C_{PD} + \frac{c}{a}C_{PC} - \frac{b}{a}C_{PB} - C_{PA}$$

 $\dot{\mathcal{L}} \quad \therefore \quad \sum_{AU} \sum_{AU} \Theta_i \left(H_{i0} - H_i \right) + F_{A0} X \Delta H_{Rx} = 0$

Intro to Heat Effects

Substituting back into the Energy Balance

 $\int \sum_{k=1}^{n} A = A = \left[\frac{1}{2} - R \right] = -R \left[\frac{1}{2} - R \right] = -$

Adiabatic Energy Balance Adiabatic (Q=0) and no Work $(W_s = 0)$ $T = T_0 - \frac{X \left[\Delta H_R^o(T_R) + \Delta \hat{C}_P(T - T_R) \right]}{\sum \Theta_i \widetilde{C}_{Pi} + X \Delta \hat{C}_P} = T_0 - \frac{X \left[\Delta H_R(T) \right]}{\sum \Theta_i \widetilde{C}_{Pi} + X \Delta \hat{C}_P}$ **Exothermic**

Example: Adiabatic PFR $A \leftrightarrow B$

1) Mole Balance: $\frac{dX}{dV} = -\frac{r_A}{F_{A0}}$

2) Rate Laws:
$$r_A = -k \left[C_A - \frac{C_B}{k_C} \right]$$
 $k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$
$$\Delta C_P = 0 \qquad k_C = k_{C2} \exp \left[\frac{\Delta H_X^0}{k} \left(\frac{1}{T_2} - \frac{1}{T} \right) \right]$$

Example: Adiabatic PFR A ↔ B

3) Stoichiometry:

$$\mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}\mathbf{0}} \left(\mathbf{1} - \mathbf{X} \right)$$

$$C_B = C_{A0}X$$

4) Energy Balance

$$T = T_0 + \frac{-\Delta H_X^0 X}{\sum \theta_i C_{Pi}}$$

First need to calculate the maximum conversion which is at the *adiabatic equilibrium conversion*.

Example: Adiabatic PFR

Differential equations

1 d(T)/d(t) = 1

Explicit equations

1 Kc1 = 1000

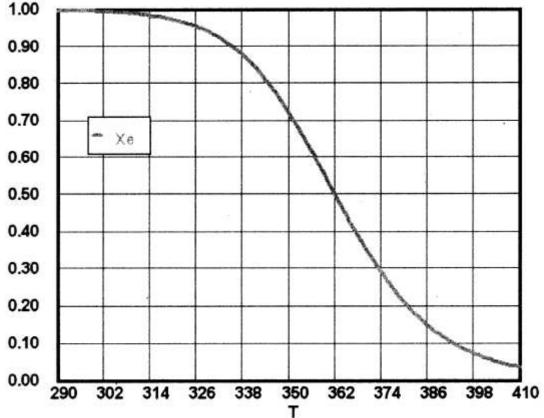
2 T1 = 290

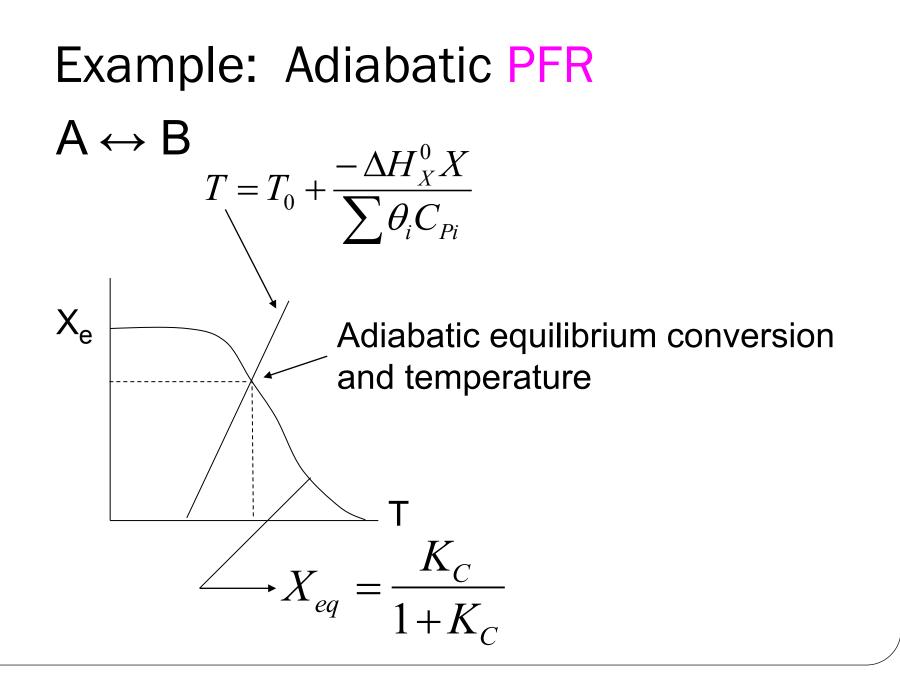
3 R = 1.987

4 DeltaH = -20000

5 Kc = Kc1*exp((DeltaH/R)*(1/T1-1/T))
$$^{\circ}$$

6 Xe = Kc/(1+Kc)





Example: Adiabatic PFR We can now form a table. Set X, then calculate T, $-V_A$, and $F_{A0}/-r_A$, increment X, then plot $F_{A0}/-r_A$ vs. X: $F_{A0}/-r_{A}$ Х

End of Web Lecture 19 Class Lecture 17