
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place. 
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 Energy Balance Fundamentals 

 Adiabatic reactors 
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Today’s Lecture 

3 

Energy Balance, Rationale and Overview 

Let’s calculate the volume necessary to achieve a 

conversion, X, in a PFR for a first-order, exothermic and 

adiabatic reaction.  

The temperature profile might look something like this: 
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Energy Balance, Rationale and Overview 
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Mole Balance: 

 

 

Rate Law: 

 

Stoichiometry: 

 

 

Combine: 
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Energy Balance, Rationale and Overview 
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We cannot solve this equation because we don’t 

have X either as a function of  V or T.  

 

We need another equation. That equation is:  
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The Energy Balance 



User Friendly Equations Relate T and X or Fi 
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1. Adiabatic CSTR, PFR, Batch or PBR 

ˆ0     0S PW C  



XEB 
i CPi

T T0 
H o

Rx



X 
˜ C PA

T T0 
HRx



T  T0 
H o

Rx XEB

iCPi




7 

T 

XEB 

Exothermic 

T0 

0 

T 

XEB 

Endothermic 

T0 

0 

Adiabatic 



2. CSTR with heat exchange: UA(Ta-T) and a 

large coolant flow rate 
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User Friendly Equations Relate T and X or Fi 

 



3. PFR/PBR with heat exchange 
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User Friendly Equations Relate T and X or Fi 

 



3B. PBR in terms of conversion 
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User Friendly Equations Relate T and X or Fi 

 



3D. PFR in terms of molar flow rates 
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User Friendly Equations Relate T and X or Fi 



5. For Semibatch or unsteady CSTR 
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6. For multiple reactions in a PFR (q reactions and m species) 
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12 Let’s look where these User Friendly Equations came from. 

User Friendly Equations Relate T and X or Fi 



Energy Balance  

Reactor with no Spatial Variations 
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Energy Balance  
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OK folks, here is what we are going to do to put the 

above equation into a usable form. 

1. Replace Ui by Ui=Hi-PVi   

2. Express Hi in terms of heat capacities 

3. Express Fi in terms of either conversion or rates  

 of reaction 

4. Define ΔHRx 

5. Define ΔCP 

6. Manipulate so that the overall energy balance  
is in terms of the User Friendly Equations. 
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Assumptions: 
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Other energies small compared to internal 

Intro to Heat Effects 
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Hi Ui P ˜ V i

Recall: 
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Substituting for  W

  0HFHFWQ ii0i0iS
Steady State: 

Intro to Heat Effects 



General Energy Balance : 
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Intro to Heat Effects 
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For No Phase Changes 
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Substituting back into the Energy Balance  
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Intro to Heat Effects 



Substituting back into the Energy Balance  
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Intro to Heat Effects 
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Adiabatic Energy Balance  
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Adiabatic (Q=0) and no Work  )0( 
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1) Mole Balance: 
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Example:  Adiabatic PFR 
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A ↔ B 
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3) Stoichiometry: 
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First need to calculate the maximum conversion 

which is at the adiabatic equilibrium conversion. 

A ↔ B 

Example:  Adiabatic PFR 



Example:  Adiabatic PFR 
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A ↔ B 

Example:  Adiabatic PFR 



We can now form a table. Set X, then calculate T, -VA,  

and FA0/-rA, increment X, then plot FA0/-rA vs. X: 
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Example:  Adiabatic PFR 



End of Web Lecture 19 

Class Lecture 17 
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