Lecture 1

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 1 - Thursday 1/10/2013

- Introduction
- Definitions
- General Mole Balance Equation
- Batch (BR)
- Continuously Stirred Tank Reactor (CSTR)
- Plug Flow Reactor (PFR)
- Packed Bed Reactor (PBR)

Chemical Reaction Engineering

Chemical reaction engineering is at the heart of virtually every chemical process. It separates the chemical engineer from other engineers.

Industries that Draw Heavily on Chemical Reaction Engineering (CRE) are:
CPI (Chemical Process Industries)
Examples like Dow, DuPont, Amoco, Chevron

Dimersol G (an organometallic catalyst) unit (two CSTRs and one tubular reactor in series) to dimerize propylene into isohexanes. Institut Français du Pétrole process. [Photo courtesy of Editions Technip (Institut Français du Pétrole).]

Chemical Plant for Ethylene Glycol (Ch. 5)
 (Ch. 7)

Effective Lubricant Design Scavenging Free Radicals

Lubricant Design

Lu
Pharmacokinetics of Cobra Bites Multiple Reactions in a Batch (Body) Reactor Cobra Bites (Ch. 8 DVD-ROM)

Nitroanaline Plant Explosion Exothermic Reactions That Run Away
Plant Safety
(Ch. 9)
(Ch. 11,12,13)

Materials on the Web and CD-ROM

 http://www.umich.edu/~essen/
Let's Begin CRE

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
There are three ways for a species to loose its identity:

1. Decomposition
$\mathrm{CH}_{3} \mathrm{CH}_{3} \rightarrow \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
2. Combination
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
3. Isomerization
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$

Reaction Rate

The reaction rate is the rate at which a species looses its chemical identity per unit volume.

The rate of a reaction ($\mathrm{mol} / \mathrm{dm}^{3} / \mathrm{s}$) can be expressed as either:

- The rate of Disappearance of reactant: $-\mathbf{r}_{\mathrm{A}}$ or as
- The rate of Formation (Generation) of product: $\mathbf{r}_{\mathbf{p}}$

Reaction Rate

Consider the isomerization

$$
A \rightarrow B
$$

$r_{A}=$ the rate of formation of species A per unit volume
$-r_{A}=$ the rate of a disappearance of species A per unit volume
$r_{B}=$ the rate of formation of species B per unit volume

Reaction Rate

EXAMPLE: A \rightarrow B
If Species B is being formed at a rate of 0.2 moles per decimeter cubed per second, i.e., $r_{B}=0.2 \mathrm{~mole} / \mathrm{dm}^{3} / \mathrm{s}$

Then A is disappearing at the same rate:
$-r_{A}=0.2 \mathrm{~mole} / \mathrm{dm}^{3} / \mathrm{s}$
The rate of formation (generation of A) is:

$$
\mathrm{r}_{\mathrm{A}}=-0.2 \mathrm{~mole} / \mathrm{dm}^{3} / \mathrm{s}
$$

Reaction Rate

- For a catalytic reaction we refer to $-r_{A}{ }^{\prime}$, which is the rate of disappearance of species A on a per mass of catalyst basis. (mol/gcat/s)

NOTE: $\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}$ is not the rate of reaction

Reaction Rate

Consider species j :

1. \mathbf{r}_{j} is the rate of formation of species j per unit volume [e.g. mol/dm ${ }^{3} \mathrm{~s}$]
2. \mathbf{r}_{j} is a function of concentration, temperature, pressure, and the type of catalyst (if any)
3. \mathbf{r}_{j} is independent of the type of reaction system (batch, plug flow, etc.)
4. \mathbf{r}_{j} is an algebraic equation, not a differential equation

$$
\text { (e.g. }-r_{A}=k C_{A} \text { or }-r_{A}=k C_{A}{ }^{2} \text {) }
$$

Building Block 1:

General Mole Balances

$\left[\begin{array}{l}\text { Molar Flow } \\ \text { Rate of } \\ \text { Species } j \text { in }\end{array}\right]-\left[\begin{array}{l}\text { Molar Flow } \\ \text { Rate of } \\ \text { Species } j \text { out }\end{array}\right]+\left[\begin{array}{l}\text { Molar Rate } \\ \text { Generation } \\ \text { of Species } j\end{array}\right]=\left[\begin{array}{l}\text { Molar Rate } \\ \text { Accumulation } \\ \text { of Species } j\end{array}\right]$

$$
\begin{array}{lll}
F_{j 0} & -F_{j}+G_{j} & =\frac{d N_{j}}{d t} \\
\left(\frac{\text { mole }}{\text { time }}\right) & -\left(\frac{\text { mole }}{\text { time }}\right)+\left(\frac{\text { mole }}{\text { time }}\right) & =\left(\frac{\text { mole }}{\text { time }}\right)
\end{array}
$$

Building Block 1:

General Mole Balances

If spatially uniform:

$$
G_{j}=r_{j} V
$$

If NOT spatially uniform:

Building Block 1:

General Mole Balances

$G_{j}=\sum_{i=1}^{n} r_{j i} \Delta V_{i}$

Take limit

$$
G_{j}=\sum_{i=1}^{n} r_{\lim \Delta V \rightarrow 0} \Delta V_{i}=\int r_{j} d V
$$

Building Block 1:
General Mole Balances

General Mole Balance on System Volume V

$$
\begin{aligned}
\text { In }- \text { Out }+ \text { Generation } & =\text { Accumulation } \\
F_{A 0}-F_{A}+\int r_{A} d V & =\frac{d N_{A}}{d t}
\end{aligned}
$$

Batch Reactor - Mole Balances

Batch

$$
\begin{aligned}
& F_{A 0}-F_{A}+\int r_{A} d V=\frac{d N_{A}}{d t} \\
& F_{A 0}=F_{A}=0
\end{aligned}
$$

Well-Mixed

$$
\int r_{A} d V=r_{A} V
$$

$$
\frac{d N_{A}}{d t}=r_{A} V
$$

Batch Reactor - Mole Balances

Integrating

$$
d t=\frac{d N_{A}}{r_{A} V}
$$

when $\quad t=0 \quad N_{A}=N_{A 0}$

$$
t=t \quad N_{A}=N_{A}
$$

$$
t=\int_{N_{A 0}}^{N_{A}} \frac{d N_{A}}{-r_{A} V}
$$

Time necessary to reduce the number of moles of A from $N_{A 0}$ to N_{A}.

Batch Reactor - Mole Balances

CSTR - Mole Balances

CSTR

$$
F_{A 0}-F_{A}+\int r_{A} d V=\frac{d N_{A}}{d t}
$$

Steady State

$$
\frac{d N_{A}}{d t}=0
$$

CSTR - Mole Balances

Well Mixed

$$
\begin{gathered}
\int r_{A} d V=r_{A} V \\
F_{A 0}-F_{A}+r_{A} V=0 \\
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
\end{gathered}
$$

CSTR volume necessary to reduce the molar flow rate from $F_{A 0}$ to F_{A}.

Plug Flow Reactor - Mole Balances

Polyethylene reactor; this 16 -in inner-diameter reactor is designed to operate at $35,000 \mathrm{psi}$ and $600^{\circ} \mathrm{F}$; in operation, this reactor is in a vertical configuration. Courtesy of Autoclave Engineers, Division of Snap-tite, Inc.

Plug Flow Reactor - Mole Balances

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { In } \\
\text { at } V
\end{array}\right]-\left[\begin{array}{l}
\text { Out } \\
\text { at } V+\Delta V
\end{array}\right]+\left[\begin{array}{l}
\text { Generation } \\
\text { in } \Delta V
\end{array}\right]=0} \\
& \left.F_{A}\right|_{V}-\left.F_{A}\right|_{V+\Delta V}+r_{A} \Delta V=0
\end{aligned}
$$

Plug Flow Reactor - Mole Balances

Rearrange and take limit as $\Delta \mathrm{V} \rightarrow 0$

$$
\begin{gathered}
\lim _{\Delta V \rightarrow 0} \frac{\left.F_{A}\right|_{V+\Delta V}-\left.F_{A}\right|_{V}}{\Delta V}=r_{A} \\
\frac{d F_{A}}{d V}=r_{A}
\end{gathered}
$$

This is the volume necessary to reduce the entering molar flow rate ($\mathrm{mol} / \mathrm{s}$) from $\mathrm{F}_{\mathrm{A} 0}$ to the exit molar flow rate of F_{A}.

Plug Flow Reactor - Mole Balances

PFR

$$
F_{A 0}-F_{A}+\int r_{A} d V=\frac{d N_{A}}{d t}
$$

Steady State

$$
\frac{d N_{A}}{d t}=0
$$

$$
F_{A 0}-F_{A}+\int r_{A} d V=0
$$

Alternative Derivation

Plug Flow Reactor - Mole Balances

Differientiate with respect to V

$$
0-\frac{d F_{A}}{d V}=-r_{A} \quad \square \frac{d F_{A}}{d V}=r_{A}
$$

The integral form is: $\quad V=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}}$
This is the volume necessary to reduce the entering molar flow rate ($\mathrm{mol} / \mathrm{s}$) from $\mathrm{F}_{\mathrm{A} 0}$ to the exit molar flow rate of F_{A}.

Packed Bed Reactor - Mole Balances

 PBR

$$
F_{A}(W)-F_{A}(W+\Delta W)+r_{A}^{\prime} \Delta W=\frac{d N_{A}}{d t}
$$

Steady State

$$
\frac{d N_{A}}{d t}=0
$$

$$
\lim _{\Delta W \rightarrow 0} \frac{\left.F_{A}\right|_{W+\Delta W}-\left.F_{A}\right|_{W}}{\Delta W}=r_{A}^{\prime}
$$

Packed Bed Reactor - Mole Balances

Rearrange:

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

The integral form to find the catalyst weight is:

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}}
$$

PBR catalyst weight necessary to reduce the entering molar flow rate $\mathrm{F}_{\mathrm{A} 0}$ to molar flow rate F_{A}.

Reactor Mole Balances Summary

The GMBE applied to the four major reactor types (and the general reaction $A \rightarrow B$)
Reactor
Batch Differential Algebraic

$$
\frac{d N_{A}}{d t}=r_{A} V
$$

$$
t=\int_{N_{A 0}}^{N_{A}} \frac{d N_{A}}{r_{A} V}
$$

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

$$
\frac{d F_{A}}{d V}=r_{A}
$$

$$
V=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{d r_{A}} \underbrace{\mathrm{~F}_{\mathrm{A}}}_{V}
$$

PFR

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}} \mathrm{F}_{\mathrm{A}} \underbrace{}_{\mathrm{W}}
$$

Reactors with Heat Effects

- EXAMPLE: Production of Propylene Glycol in an Adiabatic CSTR
- Propylene glycol is produced by the hydrolysis of propylene oxide:

What are the exit conversion X and exit temperature T ?

Solution

Let the reaction be represented by

$$
A+B \rightarrow C
$$

1. Mole Balance and design equation:

$$
F_{\mathrm{A} 0}-F_{\mathrm{A}}+r_{\mathrm{A}} V=0
$$

The design equation in terms of X is

$$
V=\frac{F_{\mathrm{A} 0} X}{-r_{\mathrm{A}}}
$$

2. Rate Law:

$$
-r_{\mathrm{A}}=k C_{\mathrm{A}}
$$

3. Stoichiometry (liquid phase, $v=v_{0}$):

$$
C_{\mathrm{A}}=C_{\mathrm{A} 0}(1-X)
$$

4. Combining yields

$$
V=\frac{F_{\mathrm{A} 0} X}{k C_{\mathrm{A} 0}(1-X)}=\frac{v_{0} X}{k(1-X)}
$$

Solving for X as a function of T and recalling that $\tau=V / v_{0}$ gives

$$
X_{\mathrm{MB}}=\frac{\tau k}{1+\tau k}=\frac{\tau A e^{-E / R T}}{1+\tau A e^{-E / R T}}
$$

This equation relates temperature and conversion through the mole balance.
b. Stoichiometry $\left(C_{\mathrm{A} 0}, \Theta_{i}, \tau\right)$: The total liquid volumetric flow rate entering the reactor is

$$
\begin{aligned}
& V=300 \mathrm{gal}=40.1 \mathrm{ft}^{3} \\
& \tau=\frac{V}{v_{0}}=\frac{40.1 \mathrm{ft}^{3}}{326.3 \mathrm{ft}^{3} / \mathrm{h}}=0.123 \mathrm{~h} \\
& \begin{aligned}
C_{\mathrm{A} 0} & =\frac{F_{\mathrm{A} 0}}{v_{0}}=\frac{43.0 \mathrm{lb} \mathrm{~mol} / \mathrm{h}}{326.3 \mathrm{ft}^{3} / \mathrm{h}} \\
& =0.132 \mathrm{lb} \mathrm{~mol} / \mathrm{ft}^{3}
\end{aligned}
\end{aligned}
$$

For methanol: $\quad \Theta_{\mathrm{M}}=\frac{F_{\mathrm{M} 0}}{F_{\mathrm{A} 0}}=\frac{71.87 \mathrm{lb} \mathrm{mol} / \mathrm{h}}{43.0 \mathrm{lb} \mathrm{mol} / \mathrm{h}}=1.67$
For water: $\quad \Theta_{\mathrm{B}}=\frac{F_{\mathrm{B} 0}}{F_{\mathrm{A} 0}}=\frac{802.8 \mathrm{lb} \mathrm{mol} / \mathrm{h}}{43.0 \mathrm{lb} \mathrm{mol} / \mathrm{h}}=18.65$
c. Evaluate mole balance terms: The conversion calculated from the mole balance, X_{MB}, is found from Equation (E8-8.5).

$$
X_{\mathrm{MB}}=\frac{\left(2.084 \times 10^{12}\right) \exp (-16,306 / T)}{1+\left(2.084 \times 10^{12}\right) \exp (-16,306 / T)}, T \text { is in }{ }^{\circ} \mathrm{R}
$$

5. The energy balance for this adiabatic reaction in which there is negligible energy input provided by the stirrer is

$$
X_{\mathrm{EB}}=\frac{\Sigma \Theta_{i} C_{P_{i}}\left(T-T_{i 0}\right)}{-\left[\Delta H_{\mathrm{Rx}}^{\circ}\left(T_{R}\right)+\Delta C_{P}\left(T-T_{R}\right)\right]}
$$

d. Evaluate energy balance terms

$$
\begin{aligned}
\Sigma \Theta_{i} C_{P_{i}} & =C_{P_{\mathrm{A}}}+\Theta_{\mathrm{B}} C_{P_{\mathrm{B}}}+\Theta_{\mathrm{M}} C_{P_{\mathrm{M}}} \\
& =35+(18.65)(18)+(1.67)(19.5)
\end{aligned}
$$

Substituting all the known quantities into the energy balance gives us

$$
X_{\mathrm{EB}}=\frac{\left(403.3 \mathrm{Btu} / \mathrm{lb} \mathrm{~mol} \cdot{ }^{\circ} \mathrm{F}\right)(T-535)^{\circ} \mathrm{F}}{-[-36,400-7(T-528)] \mathrm{Btu} / \mathrm{lb} \mathrm{~mol}}
$$

$$
X_{\mathrm{EB}}=-\frac{\Sigma \Theta_{i} C_{P_{i}}\left(T-T_{i 0}\right)}{\Delta H_{\mathrm{Rx}}^{\mathrm{o}}\left(T_{R}\right)+\Delta C_{P}\left(T-T_{R}\right)}
$$

$$
X_{\mathrm{EB}}=\frac{403.3(T-535)}{36,400+7(T-528)}
$$

7. Solving.

T $\left({ }^{\circ} \mathrm{R}\right)$	X_{MB} [Eq. (E8-8.10)]	$X_{\text {EB }}$ [Eq. (E8-8.12)]
535	0.108	0.000
550	0.217	0.166
565	0.379	0.330
575	0.500	0.440
585	0.620	0.550
595	0.723	0.656
605	0.800	0.764
615	0.860	0.872
625	0.900	0.980

Analysis

We have applied our CRE algorithm to calculate the Conversion ($\mathrm{X}=0.84$) and Temperature ($\mathrm{T}=614{ }^{\circ} \mathrm{R}$) in a 300 gallon CSTR operated adiabatically.

Keeping Up

Separations

Filtration
Distillation
Adsorption

These topics do not build upon one another.

Reaction Engineering

Stoichiometry

These topics build upon one another.

CRE Algorithm

Rate Laws

Be careful not to cut corners on any of the
CRE building blocks while learning this material!

Otherwise, your Algorithm becomes unstable.

End of Lecture 1

Supplemental Slides Additional Applications of CRE

The reactor is 3.5 m in diameter and 38 m tall.

Supplemental Slides Additional Applications of CRE

Supplemental Slides Additional Applications of CRE

- Beverly Hills

Schematic diagrams of the Los Angeles basin.

Supplemental Slides Additional Applications of CRE

Hippo Digestion (Ch. 2)

Supplemental Slides Additional Applications of CRE

Modeling the Digestive System of a Hippopotamus*
Matthew Robertson, Fredrik Persson, Brian Vicente, Professor H. Scott Fogler

"Even hippo's like Chemical Reaction Engineering."

Supplemental Slides Additional Applications of CRE

Supplemental Slides Additional Applications of CRE

\Rightarrow Represents mountoins
or hills

Supplemental Slides Additional Applications of CRE

Chemical Plant for Ethylene Glycol (Ch. 5)

Supplemental Slides Additional Applications of CRE

Oil Recovery (Ch. 7)

Supplemental Slides Additional Applications of CRE

Pharmacokinetics
of Cobra Bites
Multiple Reactions
in a Batch
(Body) Reactor
Cobra Bites
(Ch. 8 DVD-ROM)

Supplemental Slides Additional Applications of CRE

Effective Lubricant
Design Scavenging
Free Radicals
Lubricant Design (Ch. 9)

Supplemental Slides Additional Applications of CRE

Nitroanaline Plant Explosion Exothermic Reactions That Run Away

Plant Safety
(Ch. 11,12,13)

