Lecture 22

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 22
 Class Lecture 18-Thursday 3/21/2013

Multiple Reactions with Heat Effects

Multiple Reactions with Heat Effects

PFR/PBR:

CSTR:

$$
\mathrm{UA}\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}\right)-\mathrm{F}_{\mathrm{A} 0} \sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{C}_{\mathrm{P} i} \theta_{\mathrm{i}}\left(\mathrm{~T}-\mathrm{T}_{0}\right) \sum_{\mathrm{i}=1}^{\mathrm{q}}\left(\mathrm{r}_{\mathrm{ij}}\right) \mathrm{H}_{\mathrm{Rxij}}(\mathrm{~T})=0
$$

These equations are coupled with the mole balances and rate law equations.

Multiple Reactions with Heat Effects

Multiple Reactions

Make sure it is in respect to A; Subscripts must agree

$$
\frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Q}_{\mathrm{g}}-\mathrm{Q}_{\mathrm{r}}}{\sum_{\mathrm{F}} \mathrm{~F}_{\mathrm{i}} \mathrm{C}_{\mathrm{p}}}
$$

$$
\mathrm{Q}_{\mathrm{g}}=\sum \mathrm{r}_{\mathrm{ij}} \Delta \mathrm{H}_{\mathrm{Rx} \mathrm{ij}}=\mathrm{r}_{1 \mathrm{~A}} \Delta \mathrm{H}_{\mathrm{Rx} 1 \mathrm{~A}}+\mathrm{r}_{2 \mathrm{~A}} \Delta \mathrm{H}_{\mathrm{Rx} 2 \mathrm{~A}}
$$

Multiple Reactions with Heat Effects

Multiple Reactions

1) Mole Balances:- every species (no conversion!)
2) Rate Laws:

- relative rates
- net rates

$$
\text { 3) Stoichiometry: } \quad \begin{aligned}
& C_{A}=C_{T 0} \\
& \frac{F_{A}}{F_{T}} y \frac{T_{0}}{T} \\
& \\
& \frac{d y}{d W}=\frac{-\alpha}{2 y} \frac{F_{T}}{F_{T 0}} \frac{T}{T_{0}}
\end{aligned}
$$

Multiple Reactions with Heat Effects

Multiple Reactions

4) Heat Effects:

$$
\begin{aligned}
& \frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Q}_{\mathrm{g}}-\mathrm{Q}_{\mathrm{r}}}{\sum \mathrm{~F}_{\mathrm{i}} \mathrm{C}_{\mathrm{Pi}}} \\
& \mathrm{Q}_{\mathrm{g}}=\text { heat produced } \\
& \mathrm{Q}_{\mathrm{r}}=\text { heat removed } \\
& \mathrm{Q}_{\mathrm{g}}=\sum \mathrm{r}_{\mathrm{ij}}\left\langle\mathrm{H}_{\mathrm{Rxij}}\right. \\
& \mathrm{Q}_{\mathrm{r}}=\mathrm{Ua}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right)
\end{aligned}
$$

$$
\mathrm{Q}_{\mathrm{g}}=\sum \mathrm{r}_{\mathrm{ij}} \Delta \mathrm{H}_{\mathrm{Rxj}} \quad \text { (must have matching } \mathrm{i}, \mathrm{j} \text {) }
$$

Multiple Reactions with Heat Effects

4) Heat Effects:

$$
\begin{aligned}
& \frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Q}_{\mathrm{g}}-\mathrm{Q}_{\mathrm{r}}}{\sum \mathrm{~F}_{\mathrm{i}} \mathrm{C}_{\mathrm{Pi}}} \\
& \mathrm{Q}_{\mathrm{g}}=\mathrm{r}_{1 \mathrm{~A}} \Delta \mathrm{H}_{\mathrm{RIA}}+\mathrm{r}_{2 \mathrm{~A}} \Delta \mathrm{H}_{\mathrm{R} 2 \mathrm{~A}} \\
& \mathrm{Q}_{\mathrm{r}}=\mathrm{Ua}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right) \\
& \sum \mathrm{F}_{\mathrm{i}} \mathrm{C}_{\mathrm{Pi}}=\mathrm{F}_{\mathrm{A}} \mathrm{C}_{\mathrm{PA}}+\mathrm{F}_{\mathrm{B}} \mathrm{C}_{\mathrm{PB}}+\mathrm{F}_{\mathrm{C}} \mathrm{C}_{\mathrm{PC}}+\mathrm{F}_{\mathrm{D}} \mathrm{C}_{\mathrm{PD}} \\
& \frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Ua}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right)}{\dot{m}_{\mathrm{i}} \mathrm{C}_{\text {Pool }}}
\end{aligned}
$$

5) Parameters
$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{~F}_{\mathrm{A} 0}, \mathrm{Ua}, \ldots$ etc

Multiple Reactions with Heat Effects

4) Heat Effects:
$\frac{d T}{d V}=\frac{Q_{g}-Q_{r}}{\sum F_{i} C_{P i}}$
$\Delta H_{R x 1 A}=-12 \mathrm{~kJ} /($ mole of A reacted in reaction 1)
$\Delta H_{R x 2 B}=+8 k J /($ mole of B reacted in reaction 2)
$Q_{g}=r_{1 A} \Delta H_{R x 1 A}+r_{2 B} \Delta H_{R \times 2 B}$
Use relative rates of reaction
to get $r_{2 B}$ in terms of the rate law that is given for reaction 2, e.g., (2) $3 \mathrm{~A}+2 \mathrm{~B}-->2 \mathrm{D}$

$$
-\mathrm{r}_{2 \mathrm{~A}}=\mathrm{k}_{2 \mathrm{~A}} \mathrm{C}_{\mathrm{A}}^{3} C_{B} \text { then } \mathrm{r}_{2 \mathrm{~B}}=\frac{2}{3} \mathrm{r}_{2 \mathrm{~A}}
$$

The complex gas phase reactions
(1) $\quad \mathrm{A}+2 \mathrm{~B} \rightarrow \mathrm{C} \quad-\mathrm{r}_{1 \mathrm{~A}}=\mathrm{k}_{1 \mathrm{~A}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}^{2} \quad \Delta \mathrm{H}_{\mathrm{Rx} 1 \mathrm{~B}}=-15,000 \mathrm{cal} / \mathrm{mol} \mathrm{B}$
(2) $\quad \mathrm{A}+\mathrm{C} \rightarrow 2 \mathrm{D} \quad-\mathrm{r}_{2 \mathrm{C}}=\mathrm{k}_{2 \mathrm{C}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{C}} \quad \Delta \mathrm{H}_{\mathrm{Rx} 2 \mathrm{~A}}=-10,000 \mathrm{cal} / \mathrm{mol} \mathrm{A}$
take place in a $10 \mathrm{dm}^{3}$ PFR with a heat exchanger. Plot the temperature, concentrations, molar flow rates down the length of the reactor for the following operations. E.g., Note any maximums or minimums on your plot along with how they change for the different types of operations.
(a) Adiabatic operation
(b) Heat exchange with constant T_{a}
(c) Co current heat exchange
(d) Counter current heat exchange
(e) For parts (c) and (d), plot Q_{r} and Q_{g} down the length of the reactor. What do you observe?

Additional Information

$$
\begin{array}{lr}
\mathrm{C}_{\mathrm{P}_{\mathrm{A}}}=10 \mathrm{cal} / \mathrm{mol} / \mathrm{K} & \mathrm{C}_{\mathrm{P}_{\mathrm{C}}}=30 \mathrm{cal} / \mathrm{mol} / \mathrm{K} \\
\mathrm{C}_{\mathrm{P}_{\mathrm{B}}}=10 \mathrm{cal} / \mathrm{mol} / \mathrm{K} & \mathrm{C}_{\mathrm{P}_{\mathrm{D}}}=20 \mathrm{cal} / \mathrm{mol} / \mathrm{K} \\
\mathrm{k}_{1 \mathrm{~A}}=40\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{2} / \mathrm{s} / \mathrm{K} \text { at } 300 \mathrm{~K} \text { and } \mathrm{E}_{1}=8,000 \mathrm{cal} / \mathrm{mol} \\
\mathrm{k}_{2 \mathrm{C}}=2\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{2} / \mathrm{s} / \mathrm{K} \text { at } 300 \mathrm{~K} \text { and } \mathrm{E}_{2}=12,000 \mathrm{cal} / \mathrm{mol} \\
\mathrm{C}_{\mathrm{T}_{0}}=0.2 \mathrm{~mol} / \mathrm{dm}^{3}, \quad \mathrm{C}_{\mathrm{P}_{\mathrm{Cool}}}=1 \mathrm{cal} / \mathrm{g} / \mathrm{K}, \quad \dot{\mathrm{n}}_{\mathrm{Cool}} 20 \mathrm{~g} / \mathrm{s} \\
\mathrm{Ua}=80 \mathrm{cal} / \mathrm{dm}^{3} / \mathrm{s} / \mathrm{K}, \mathrm{~T}_{\mathrm{ao}}=325 \mathrm{~K}, \mathrm{~T}_{0}=300 \mathrm{~K} \\
\mathrm{~F}_{\mathrm{A} 0}=5 \mathrm{~mol} / \mathrm{s}, \mathrm{~F}_{\mathrm{B} 0}=10 \mathrm{~mol} / \mathrm{s}, \mathrm{~F}_{\mathrm{C} 0}=0, \mathrm{~F}_{\mathrm{D} 0}=0
\end{array}
$$

POLYMATH Report

	Variable	Initial value	Final value
1	Ca	0.0666667	$2.49 \mathrm{E}-05$
2	Cb	0.1333333	0.0611818
3	Cc	0	0.0012689
4	Cpa	10.	10.
5	Cpb	10.	10.
6	Cpc	30.	30.
7	Срсо	10.	10.
8	Cpd	20.	20.
9	Cto	0.2	0.2
10	DH1b	-1.5E+04	$-1.5 \mathrm{E}+04$
11	DH2a	-10000.	-10000.
12	E1	8000.	8000.
13	E2	1.2E+04	$1.2 \mathrm{E}+04$
14	Fa	5.	0.0019942
15	Fb	10.	4.900364
16	Fc	0	0.1016299
17	Fd	0	4.896376
18	Ft	15.	9.900364
19	k1a	40.	6734.733
20	k2c	2.	4369.388
21	m	50.	50.
22	Qg	1422.222	20.21055
23	Qr	-2000.	1126.152
24	R	1.987	1.987
25	r1a	-0.0474074	-0.0006277
26	r1b	-0.0948148	-0.0012553
27	r1c	0.0474074	0.0006277
28	r2a	0	-0.000138
29	r2c	0	-0.000138
30	r2d	0	0.0002761
31	ra	-0.0474074	-0.0007657
32	rb	-0.0948148	-0.0012553
33	rc	0.0474074	0.0004896
34	rd	0	0.0002761
35	sumFiCpi	150.	150.
36	T	300.	485.4075
37	Ta	325.	471.3306
38	Ta55	325.	325.
39	To	300.	300.
40	Ua	80.	80.
41	V	0	10.
42	y	1.	1.

Differential equations

$1 \mathrm{~d}(\mathrm{Fa}) / \mathrm{d}(\mathrm{V})=\mathrm{ra}$
$2 \mathrm{~d}(\mathrm{Fb}) / \mathrm{d}(\mathrm{V})=\mathrm{rb}$
$3 d(F c) / d(V)=r c$
$4 \mathrm{~d}(\mathrm{Fd}) / \mathrm{d}(\mathrm{V})=\mathrm{rd}$
$5 \mathrm{~d}(\mathrm{~T}) / \mathrm{d}(\mathrm{V})=(\mathrm{Qg}-\mathrm{Qr}) /$ sumFiCpi
$6 d(T a) / d(V)=U a *(T-T a) / m / C p c o$

Explicit equations

$1 E 2=12000$
$y=1$
$R=1.987$
$\mathrm{Ft}=\mathrm{Fa}+\mathrm{Fb}+\mathrm{Fc}+\mathrm{Fd}$
$\mathrm{T}_{0}=300$
$k 2 c=2 * \exp ((E 2 / R) *(1 / 300-1 / T))$
$E 1=8000$
Cto $=0.2$
$\mathrm{Ca}=C \mathrm{Co}^{*}(\mathrm{Fa} / \mathrm{Ft})^{*}(\mathrm{To} / \mathrm{T})^{*} \mathrm{y}$
1
$10 \mathrm{Cc}=\mathrm{Cto}^{*}(\mathrm{Fc} / \mathrm{Ft})^{*}(\mathrm{To} / \mathrm{T})^{*} \mathrm{y}$
$11+2 c=-k 2 c^{*} C a^{*} C c$
$12 \mathrm{Cpco}=10$
$13 \mathrm{~m}=50$
$14 \mathrm{Cb}=\mathrm{Cto}^{*}(\mathrm{Fb} / \mathrm{Ft})^{*}(\mathrm{To} / \mathrm{T})^{*} \mathrm{y}$
$15 \mathrm{kla}=40^{*} \exp \left((\mathrm{E} 1 / \mathrm{R})^{*}(1 / 300-1 / \mathrm{T})\right)$
16 rla $=-k 1 a^{*} \mathrm{Ca}^{*} \mathrm{Cb}^{\wedge} 2$
$17 \mathrm{r} 1 \mathrm{~b}=2^{\mathrm{x}} \mathrm{r} 1 \mathrm{a}$
$18 \mathrm{rb}=\mathrm{r} 1 \mathrm{~b}$
$19 \mathrm{r} 2 \mathrm{a}=\mathrm{r} 2 \mathrm{c}$
$20 \mathrm{DH} 1 \mathrm{~b}=-15000$
21 DH2a $=-10000$
$22 \mathrm{rlc}=-r 1 \mathrm{a}$
23 Ta55 $=325$
$24 \mathrm{Cpd}=20$
$25 \mathrm{Cpa}=10$
$26 \mathrm{Cpb}=10$
$27 \mathrm{Cpc}=30$
28 sumFiCpl $=\mathrm{Cpa} * \mathrm{Fa}+\mathrm{Cpb} * \mathrm{Fb}+\mathrm{Cpc} * \mathrm{Fc}+\mathrm{Cpd} * \mathrm{Fd}$
$29 \mathrm{rc}=\mathrm{r} 1 \mathrm{c}+\mathrm{r} 2 \mathrm{c}$
$30 \mathrm{Ua}=80$
$31 r 2 d=-2^{*} r 2 c$
$32 \mathrm{ra}=\mathrm{r} 1 \mathrm{a}+\mathrm{r} 2 \mathrm{a}$
$33 \mathrm{rd}=\mathrm{r} 2 \mathrm{~d}$
$34 \mathrm{Qg}=\mathrm{r} 1 \mathrm{~b}^{*} \mathrm{DH} 1 \mathrm{~b}+\mathrm{r} 2 \mathrm{a} * \mathrm{DH} 2 \mathrm{a}$
$35 \mathrm{Qr}=\mathrm{Ua} \mathrm{a}^{*}(\mathrm{~T}-\mathrm{Ta})$

Multiple Reactions with Heat Effects

Multiple Reactions

4) Heat Effects: $\frac{d T}{d V}=\left(-r_{A}\right)\left(-\Delta H_{R x}\right)-\frac{U a\left(T-T_{a}\right)}{\sum F_{i} C_{P_{i}}}$

$$
\begin{aligned}
\frac{d T}{d V}=\frac{Q_{g}-Q_{r}}{\sum F_{i} C_{P i}} & Q_{g}=\text { heat produced } \\
& Q_{r}=\text { heat removed }
\end{aligned}
$$

$Q_{g}=\sum r_{i j} \Delta H_{R i j} \quad$ (must have matching i, j)

Multiple Reactions with Heat Effects in a PFR and CSTR

Examples:

(1) $A+2 B \rightarrow C$
$-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}$
and
$\Delta H_{R 1 A}=-20,000 \mathrm{cal} / \mathrm{mol} \mathrm{A}$
(2) $2 A+3 C \rightarrow D$
$-r_{2 C}=k_{2 C} C_{A}^{2} C_{C}^{3}$
and
$\Delta H_{R 2 A}=10,000 \mathrm{cal} / \mathrm{mol} \mathrm{A}$

Example A: Liquid Phase CSTR

(1) $A+2 B \rightarrow C$

$$
-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $\mathrm{k}_{1 \mathrm{~A}}$ is defined with respect to species A.
(2) $3 C+2 A \rightarrow D \quad-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}$

NOTE: The specific reaction rate $\mathrm{k}_{2 \mathrm{C}}$ is defined with respect to species C.

Example A: Liquid Phase CSTR

The complex liquid phase reactions take place in a $2,500 \mathrm{dm}^{3}$ CSTR. The feed is equal molar in A and B with $F_{A 0}=200 \mathrm{~mol} / \mathrm{min}$, the volumetric flow rate is 100 $\mathrm{dm}^{3} / \mathrm{min}$ and the reation volume is $50 \mathrm{dm}^{3}$.

Find the concentrations of A, B, C and D existing in the reactor along with the existing selectivity.

Plot $F_{A}, F_{B}, F_{C}, F_{D}$ and $S_{C / D}$ as a function of V

Example A: Liquid Phase CSTR Solution

Liquid Phase CSTR

1) Mole Balances:
(1)

$$
f\left(C_{A}\right)=v_{0} C_{A 0}-v_{0} C_{A}+r_{A} V
$$

(2)
$f\left(C_{B}\right)=v_{0} C_{B 0}-v_{0} C_{B}+r_{B} V$
(3)
$f\left(C_{C}\right)=-v_{0} C_{C}+r_{C} V$
(4)
$f\left(C_{D}\right)=-v_{0} C_{D}+r_{D} V$
2) Net Rates:

Example A: Liquid Phase CSTR

3) Stoichiometry:
(16) $\quad \mathrm{C}_{\mathrm{A}}=\mathrm{F}_{\mathrm{A}} / \mathrm{v}_{0}$
(17)

$$
\mathrm{C}_{\mathrm{B}}=\mathrm{F}_{\mathrm{B}} / \mathrm{v}_{0}
$$

(18)

$$
\mathrm{C}_{\mathrm{C}}=\mathrm{F}_{\mathrm{C}} / \mathrm{v}_{0}
$$

(19)

$$
\mathrm{C}_{\mathrm{D}}=\mathrm{F}_{\mathrm{D}} / \mathrm{v}_{0}
$$

4) Parameters:
(20) $\mathrm{v}_{0}=100 \mathrm{dm}^{3} / \mathrm{min}$
(21) $\mathrm{k}_{1 \mathrm{~A}}=10\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{2} / \mathrm{min}$

19
(22) $\quad \mathrm{k}_{2 \mathrm{C}}=15\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{4} / \mathrm{min}$

Example B: Liquid Phase PFR

Takes place in a PFR. The feed is equal molar in A and B and $F_{A 0}=200 \mathrm{~mol} / \mathrm{min}$ and the volumetric flow rate is $100 \mathrm{dm}^{3} / \mathrm{min}$. The reaction volume is $50 \mathrm{dm}^{3}$ and the rate constants are:
$k_{1 A}=10\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{2} / \mathrm{min}$
$k_{2 C}=15\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{4} / \mathrm{min}$
Rate laws are the same as Example A.
Plot $F_{A}, F_{B}, F_{C}, F_{D}$ and $S_{C / D}$ as a function of V.

Example B: Liquid Phase PFR

1) Mole Balances:

(1)

$$
\begin{array}{lr}
\frac{d F_{A}}{d V}=r_{A} & \left(F_{A 0}=200 \mathrm{~mol} / \mathrm{min}\right) \\
\frac{d F_{B}}{d V}=r_{B} & \left(F_{B 0}=200 \mathrm{~mol} / \mathrm{min}\right) \\
\frac{d F_{C}}{d V}=r_{C} & V_{F}=50 \mathrm{dm}^{3} \\
\frac{d F_{D}}{d V}=r_{D} &
\end{array}
$$

Example B: Liquid Phase PFR

2) Net Rates:
(5)

$$
r_{A}=r_{1 A}+r_{2 A}
$$

(6)

$$
r_{B}=r_{1 B}
$$

(7)

$$
r_{C}=r_{1 C}+r_{2 C}
$$

(8)

$$
r_{D}=r_{2 D}
$$

2) Rate Laws:
(9) $\quad r_{1 A}=-k_{1 A} C_{A} C_{B}^{2}$

22

$$
r_{2 C}=-k_{2 C} C_{A}^{2} C_{C}^{3}
$$

Example B: Liquid Phase PFR

2) Relative Rates:

$$
\frac{r_{1 \mathrm{~A}}}{-1}=\frac{\mathrm{r}_{\mathrm{iB}}}{-2}=\frac{\mathrm{r}_{\mathrm{IC}}}{1} \quad \text { Reaction } 1
$$

(11) $\mathrm{r}_{1 \mathrm{~B}}=2 \mathrm{r}_{1 \mathrm{~A}}$
(12) $\quad r_{1 \mathrm{C}}=-\mathrm{r}_{1 \mathrm{~A}} \quad$ Reaction 2
$\frac{r_{2 A}}{-2}=\frac{r_{2 C}}{-3}=\frac{r_{2 D}}{1}$
(13) $r_{2 A}=2 / 3 r_{2 C}$
(14) $\quad r_{2 D}=-1 / 3 r_{2 C}$

Example B: Liquid Phase PFR

2) Rate Laws:

$$
\begin{array}{lll}
r_{1 A}=-k_{1 A} C_{A} C_{B}^{2} & (5) & k_{1 A}=k_{1 A 1} \exp \left[\left(E_{1} / R\right)\left(1 / T_{1}-1 / T\right)\right](6) \\
r_{2 C}=-k_{2 C} C_{A}^{2} C_{C}^{3} & \text { (7) } & k_{2 C}=k_{2 C 2} \exp \left[\left(E_{2} / R\right)\left(1 / T_{2}-1 / T\right)\right](8) \\
r_{A}=r_{1 A}+r_{2 B} & \text { (9) } r_{B}=r_{1 B}(10) \\
r_{C}=r_{1 C}+r_{2 C} & (11) & r_{D}=r_{2 D}(12) \\
r_{1 C}=-r_{1 A} & (13) & r_{1 B}=2 r_{1 A}(13) \\
r_{2 A}=2 / 3 r_{2 C} & (15) r_{2 D}=-1 / 3 r_{2 C}(16)
\end{array}
$$

Example B: Liquid Phase PFR

3) Stoichiometry:

$$
\begin{array}{lll}
C_{A}=C_{\mathrm{T} 0} \frac{\mathrm{~F}_{\mathrm{A}}}{\mathrm{~F}_{\mathrm{T}}} y \frac{\mathrm{~T}_{0}}{\mathrm{~T}} & \text { (17) } & \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{T0}} \frac{\mathrm{~F}_{\mathrm{B}}}{\mathrm{~F}_{\mathrm{T}}} y \frac{\mathrm{~T}_{0}}{\mathrm{~T}} \\
\mathrm{C}_{\mathrm{C}}=\mathrm{C}_{\mathrm{T} 0} \frac{\mathrm{~F}_{\mathrm{C}}}{\mathrm{~F}_{\mathrm{T}}} \mathrm{y} \frac{\mathrm{~T}_{0}}{\mathrm{~T}} & \text { (19) } & \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{To}} \frac{\mathrm{~F}_{\mathrm{D}}}{\mathrm{~F}_{\mathrm{T}}} y \frac{\mathrm{~T}_{0}}{\mathrm{~T}} \\
\mathrm{~F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{C}}+\mathrm{F}_{\mathrm{D}} & \text { (21) } & \frac{\mathrm{dy}}{\mathrm{dV}}=\frac{-\alpha \rho}{2 \mathrm{y}} \frac{\mathrm{~F}_{\mathrm{T}}}{\mathrm{~F}_{\mathrm{T} 0}} \frac{\mathrm{~T}}{\mathrm{~T}_{0}}
\end{array}
$$

Multiple Reactions with Heat Effects

4) Heat Effects:
$\frac{d T}{d V}=\frac{Q_{g}-Q_{r}}{\sum_{i} F_{i} C_{P i}}$
$\frac{d T_{a}}{d V}=\frac{U a\left(T-T_{a}\right)}{\dot{m}_{i} C_{\text {Pcool }}}$
$Q_{g}=r_{1 A} \Delta H_{R 1 A}+r_{2 A} \Delta H_{R 2 A}$
$Q_{r}=U a\left(T-T_{a}\right)$
$\sum C_{P}=F_{A} C_{P A}+F_{B} C_{P B}+F_{C} C_{P C}+F_{D} C_{P D}$
Parameters:

$$
E_{1}, E_{2}, F_{A 0}, \ldots
$$

Selectivity

If one were to write $S_{C / D}=F_{C} / F_{D}$ in the Polymath program, Polymath would not execute because at $\mathrm{V}=0$, $\mathrm{F}_{\mathrm{C}}=0$ resulting in an undefined volume (infinity) at $\mathrm{V}=0$. To get around this problem we start the calculation 10^{-4} dm^{3} from the reactor entrance where F_{D} will not be zero and use the following IF statement.
(15) $\quad \tilde{S}_{C / D}=$ if $(V>0.001)$ then $\left(\frac{F_{C}}{F_{D}}\right)$ else (0)

Selectivity

3) Stoichiometry:
(16)

$$
\mathrm{C}_{\mathrm{A}}=\mathrm{F}_{\mathrm{A}} / \mathrm{v}_{0}
$$

(17)

$$
\mathrm{C}_{\mathrm{B}}=\mathrm{F}_{\mathrm{B}} / \mathrm{v}_{0}
$$

(18)

$$
\mathrm{C}_{\mathrm{C}}=\mathrm{F}_{\mathrm{C}} / \mathrm{v}_{0}
$$

(19)

$$
C_{D}=F_{D} / v_{0}
$$

Parameters:
(20)

$$
v_{0}=100 \mathrm{dm}^{3} / \mathrm{min}
$$

$$
\begin{equation*}
\mathrm{k}_{1 \mathrm{~A}}=10\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{2} / \mathrm{min} \tag{21}
\end{equation*}
$$

(22) $\quad \mathrm{k}_{2 \mathrm{C}}=15\left(\mathrm{dm}^{3} / \mathrm{mol}\right)^{4} / \mathrm{min}$

End of Web Lecture 22 Class Lecture 18

