Lecture 2

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 2 - Tuesday 1/15/2013

- Review of Lecture 1
- Definition of Conversion, X
- Develop the Design Equations in terms of X
- Size CSTRs and PFRs given $-r_{A}=f(X)$
- Conversion for Reactors in Series
- Review the Fall of the Tower of CRE

Review Lecture 1

Reactor Mole Balances Summary

The GMBE applied to the four major reactor types (and the general reaction $A \rightarrow B$)
$\begin{array}{ll}\text { Reactor } & \text { Differential } \\ \text { Batch } & \frac{d N_{A}}{d t}=r_{A} V\end{array}$
Algebraic Integral

$$
t=\int_{N_{A 0}}^{N_{A}} \frac{d N_{A}}{r_{A} V} \underbrace{N_{A}}_{\mathrm{t}}
$$

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

$$
V=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{d r_{A}}
$$

$$
\frac{d F_{A}}{d V}=r_{A}
$$

PFR

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}} \underbrace{\mathrm{F}_{\mathrm{A}}}_{\mathrm{W}}
$$

Review Lecture 1

CSTR - Example Problem

Given the following information, Find V
$v_{0}=10 \mathrm{dm}^{3} / \mathrm{min}$
$C_{A 0}$
$F_{A 0}=v_{0} C_{A 0}$

$$
\begin{aligned}
& v=v_{0}=10 \mathrm{dm}^{3} / \mathrm{min} \\
& C_{A}=0.1 C_{A 0} \\
& F_{A}=v C_{A}
\end{aligned}
$$

Liquid phase

$$
\begin{aligned}
& v=v_{0} \\
& F_{A}=v_{0} C_{A}
\end{aligned}
$$

Review Lecture 1

CSTR - Example Problem

(1) Mole Balance:

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}=\frac{v_{0} C_{A 0}-v_{0} C_{A}}{-r_{A}}=\frac{v_{0}\left[C_{A 0}-C_{A}\right]}{-r_{A}}
$$

(2) Rate Law:
$-r_{A}=k C_{A}$
(3) Stoichiometry:
$C_{A}=\frac{F_{A}}{v}=\frac{F_{A}}{v_{0}}$

Review Lecture 1

CSTR - Example Problem

(4) Combine:
$V=\frac{v_{0}\left[C_{A 0}-C_{A}\right]}{k C_{A}}$
(5) Evaluate:
$C_{A}=0.1 C_{A 0}$
$V=\frac{\frac{10 \mathrm{dm}^{3}}{\min }\left[C_{A 0}-0.1 C_{A 0}\right]}{\left(0.23 \min ^{-1}\right)\left(0.1 C_{A 0}\right)}=\frac{10[1-0.1]}{(0.23)(0.1)} \mathrm{dm}^{3}$
$V=\frac{900}{2.3}=391 \mathrm{dm}^{3}$

Define conversion, X

Consider the generic reaction:

$$
\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}
$$

Chose limiting reactant A as basis of calculation:

$$
\mathrm{A}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{~B} \longrightarrow \frac{\mathrm{c}}{\mathrm{a}} \mathrm{C}+\frac{\mathrm{d}}{\mathrm{a}} \mathrm{D}
$$

Define conversion, X
$X=\frac{\text { moles A reacted }}{\text { moles A fed }}$

Batch

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { Moles } A \\
\text { remaining }
\end{array}\right]=\left[\begin{array}{l}
\text { Moles } A \\
\text { initially }
\end{array}\right]-\left[\begin{array}{l}
\text { Moles } A \\
\text { reacted }
\end{array}\right]} \\
& \quad N_{A}=N_{A 0}-N_{A 0} X \\
& d N_{A}=0-N_{A 0} d X \\
& \frac{d N_{A}}{d t}=-N_{A 0} \frac{d X}{d t}=r_{A} V
\end{aligned}
$$

Batch

$$
\frac{d N_{A}}{d t}=-\frac{r_{A} V}{N_{A 0}} \quad \begin{array}{lll}
t=0 & X=0 \\
t=t & X=X
\end{array}
$$

Integrating,
$t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}$
The necessary t to achieve conversion X.

CSTR

Consider the generic reaction:

$$
\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}
$$

Chose limiting reactant A as basis of calculation:

$$
\mathrm{A}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{~B} \longrightarrow \frac{\mathrm{c}}{\mathrm{a}} \mathrm{C}+\frac{\mathrm{d}}{\mathrm{a}} \mathrm{D}
$$

Define conversion, X
$X=\frac{\text { moles A reacted }}{\text { moles A fed }}$

CSTR

Steady State

$$
\frac{d N_{A}}{d t}=0
$$

Well Mixed

$$
\begin{gathered}
V=\frac{F_{A 0}-F_{A}}{-r_{A}} \\
\int r_{A} d V=r_{A} V
\end{gathered}
$$

CSTR

$$
\begin{gathered}
{\left[\begin{array}{l}
\text { Moles } A \\
\text { leaving }
\end{array}\right]=\left[\begin{array}{l}
\text { Moles } A \\
\text { entering }
\end{array}\right]-\left[\begin{array}{l}
\text { Moles } A \\
\text { reacted }
\end{array}\right]} \\
F_{A}=F_{A 0}-F_{A 0} X \\
F_{A 0}-F_{A}+\int r_{A} d V=0 \\
V=\frac{F_{A 0}-\left(F_{A 0}-F_{A 0} X\right)}{-r_{A}} \\
V=\frac{F_{A 0} X}{-r_{A}}
\end{gathered}
$$

CSTR volume necessary to achieve conversion X.

PFR

$$
\begin{gathered}
\frac{d F_{A}}{d V}=r_{A} \\
F_{A}=F_{A 0}-F_{A 0} X
\end{gathered}
$$

Steady State $\quad d F_{A}=0-F_{A 0} X$

$$
\frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}}
$$

PFR

$$
\begin{array}{ll}
V=0 & X=0 \\
V=V & X=X
\end{array}
$$

Integrating,

$$
V=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}} d X
$$

PFR volume necessary to achieve conversion X.

Reactor Mole Balances Summary in terms of conversion, X

Reactor
Differential

$$
N_{A 0} \frac{d X}{d t}=-r_{A} V
$$

Batch

CSTR

PFR $\quad F_{A 0} \frac{d X}{d V}=-r_{A}$

$$
F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime}
$$

PBR

Algebraic Integral
Integral

$$
V=\frac{F_{A 0} X}{-r_{A}}
$$

$t=N_{A 0} \int_{0}^{X} \frac{d X}{-r_{A} V}$

$$
V=\int_{0}^{X} \frac{F_{A 0} d X}{-r_{A}}
$$

$$
W=\int_{0}^{X} \frac{F_{A 0} d X}{-r_{A}^{\prime}} \quad \frac{\mathrm{X}}{\mathrm{~W}}
$$

Levenspiel Plots

Reactor Sizing

Given $-r_{A}$ as a function of conversion, $-r_{A}=f(X)$, one can size any type of reactor. We do this by constructing a Levenspiel plot. Here we plot either $\left(F_{A 0} /-r_{A}\right)$ or $\left(1 /-r_{A}\right)$ as a function of X. For $\left(F_{A 0} /-r_{A}\right)$ vs. X, the volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levenspiel Plots shown as:

$$
\frac{F_{A 0}}{-r_{A}}=g(X)
$$

Levenspiel Plots

CSTR

PFR

Levenspiel Plots

Numerical Evaluations of Integrals

The integral to calculate the PFR volume can be evaluated using method as Simpson's One-Third Rule: (See Appendix A.4)

${ }^{1}$		$V=\int_{0}^{X} \frac{F_{A 0}}{-r_{A}} d X=\frac{\Delta x}{3} F_{A 0}\left[\frac{1}{-r_{A}(0)}+\frac{4}{-r_{A}(X / 2)}+\frac{1}{-r_{A}(X)}\right]$
$\underline{1}$		
		Other numerical methods are:
$\frac{1}{-r_{A}\left(X_{1}\right)}$		- Trapezoidal Rule (uses two data points)
1		- Simpson's Three-Eight's
$-r_{A}(0)$	$X_{1} X_{2}$	Rule (uses four data points)
		- Five-Point Quadrature Formula

Reactors in Series

Given: r_{A} as a function of conversion, one can also design any sequence of reactors in series by defining X:

$$
X_{i}=\frac{\text { total moles of A reacted up to point } \mathrm{i}}{\text { moles of A fed to first reactor }}
$$

Only valid if there are no side streams.

Molar Flow rate of species A at point i :

$$
F_{A i}=F_{A 0}-F_{A 0} X_{i}
$$

Reactors in Series

Reactors in Series

Reactor 1:
$F_{A 1}=F_{A 0}-F_{A 0} X_{1}$

$$
V_{1}=\frac{F_{A 0}-F_{A 1}}{-r_{A 1}}=\frac{F_{A 0}-\left(F_{A 0}-F_{A 0} X_{1}\right)}{-r_{A 1}}=\frac{F_{A 0} X_{1}}{-r_{A 1}}
$$

Reactors in Series

Reactor 2:
$V_{2}=\int_{X_{1}}^{X_{2}} \frac{F_{A 0}}{-r_{A}} d X$

Reactors in Series

Reactor 3:

$$
\begin{aligned}
& F_{A 2}-F_{A 3}+r_{A 3} V_{3}=0 \\
& \left(F_{A 0}-F_{A 0} X_{2}\right)-\left(F_{A 0}-F_{A 0} X_{3}\right)+r_{A 3} V_{3}=0 \\
& V_{3}=\frac{F_{A 0}\left(X_{3}-X_{2}\right)}{-r_{A 3}}
\end{aligned}
$$

Reactors in Series

Reactors in Series

Space time τ is the time necessary to process 1 reactor volume of fluid at entrance conditions.

$$
\tau=\frac{V}{U_{0}}
$$

KEEPING UP

The tower of CRE, is it stable?

Reaction Engineering

These topics build upon one another.

CRE Algorithm

Be careful not to cut corners on any of the CRE building blocks while learning this material!

Otherwise, your Algorithm becomes unstable.

End of Lecture 2

