
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place. 

Lecture 2 
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Lecture 2 – Tuesday 1/15/2013 

 Review of Lecture 1 

 Definition of Conversion, X 

 Develop the Design Equations in terms of X 

 Size CSTRs and PFRs given –rA= f(X) 

 Conversion for Reactors in Series 

 Review the Fall of the Tower of CRE 
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The GMBE applied to the four major reactor types  

(and the general reaction AB) 
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Reactor Mole Balances Summary 

Review Lecture 1 
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CSTR – Example Problem  
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Review Lecture 1 
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CSTR – Example Problem  

(1) Mole Balance: 
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(2) Rate Law: 

(3) Stoichiometry: 
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Review Lecture 1 
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CSTR – Example Problem  

(4) Combine: 
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Define conversion, X 

7 

D d  C c B b A  a 

Consider the generic reaction: 
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CSTR 
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D d  C c B b A  a 

Consider the generic reaction: 
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Chose limiting reactant A as basis of calculation: 

fedA  moles

 reactedA  moles
 X

Define conversion, X 



CSTR 
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12 CSTR volume necessary to achieve conversion X.  
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Reactor Mole Balances Summary 
in terms of conversion, X 



Levenspiel Plots 
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Reactor Sizing 

Given –rA as a function of conversion, -rA= f(X), one 

can size any type of reactor. We do this by 

constructing a Levenspiel plot. Here we plot either 

(FA0/-rA) or (1/-rA) as a function of X. For (FA0/-rA) vs. 

X, the volume of a CSTR and the volume of a PFR 

can be represented as the shaded areas in the 

Levenspiel Plots shown as: 
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Levenspiel Plots 
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CSTR 
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PFR 
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Levenspiel Plots 



Numerical Evaluations of Integrals 

 The integral to calculate the PFR volume can be 

evaluated using method as Simpson’s One-Third 

Rule: (See Appendix A.4) 

 

 

 

 

 






















  )(

1

)2/(

4

)0(

1

3
0

0

0

XrXrr
F

x
dX

r

F
V

AAA

A

X

A

A

21 

Other numerical methods are: 

 Trapezoidal Rule (uses two 

data points) 

 Simpson’s Three-Eight’s 

Rule (uses four data points) 

 Five-Point Quadrature 

Formula 
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Given: rA as a function of conversion, one can also 

design any sequence of reactors in series by defining 

X: 

reactorfirst   tofedA  of moles

ipoint   toup reactedA  of moles total
 Xi 

Only valid if there are no side streams. 

Molar Flow rate of species A at point i:  

0 0Ai A A iF F F X 
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Reactors in Series 



23 

Reactors in Series 



Reactor 1: 
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Reactors in Series 



Reactor 2: 
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Reactors in Series 
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3X1X 2X

Reactors in Series 

Reactor 3: 
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Reactors in Series 



Space time τ is the time necessary to process 1 

reactor volume of fluid at entrance conditions. 
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Reactors in Series 



KEEPING UP 

 The tower of CRE, is it stable? 
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Reaction Engineering 

    

Mole Balance Rate Laws Stoichiometry 

These topics build upon one another. 
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Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 
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CRE Algorithm 



Mole Balance 
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Be careful not to cut corners on any of the  

CRE building blocks while learning this material! 

  

Rate Laws 



Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 
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Otherwise, your Algorithm becomes unstable. 

  



End of Lecture 2 
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