
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place. 

 

Lecture 3 



Lecture 3 – Thursday 1/17/2013 

 Review of Lectures 1 and 2 

 Building Block 1 

 Mole Balances (Review) 

 Size CSTRs and PFRs given –rA= f(X) 

 Conversion for Reactors in Series 

 Building Block 2 

 Rate Laws 

 Reaction Orders 

 Arrhenius Equation 

 Activation Energy 

 Effect of Temperature  
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The GMBE applied to the four major reactor types  

(and the general reaction AB) 
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Reactor Mole Balances Summary 
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Reactor Mole Balances Summary 
In terms of Conversion 



Levenspiel Plots 
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Reactors in Series 
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Only valid if there are no side streams 



Reactors in Series 
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Building Block 2: Rate Laws 
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Power Law Model: 
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Building Block 2: Rate Laws 
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C3BA2 

A reactor follows an elementary rate law if the 

reaction orders just happens to agree with the 

stoichiometric coefficients for the reaction as written. 

e.g. If the above reaction follows an elementary rate 

law 

 

2nd order in A, 1st order in B, overall third order 

BAAA CCkr 2



Building Block 2: Rate Laws 
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 Rate Laws are found from Experiments 

 
 

 Rate Laws could be non-elementary.  For 

example, reaction could be: 

› Second Order in A 

› Zero Order in B 

› Overall Second Order 

2

A A Ar k C 

2

B B Ar k C 

2

C C Ar k C

2A+B3C 



Relative Rates of Reaction 
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Relative Rates of Reaction 
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Reversible Elementary Reaction 
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Reversible Elementary Reaction 
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Reaction is:  First Order in A 

    Second Order in B 

    Overall third Order 
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Algorithm 
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 iA Cgr Step 1: Rate Law  

   XhCi Step 2: Stoichiometry 

 XfrA Step 3: Combine to get  

How to find  XfrA 



Arrhenius Equation 
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RTEAek 

k is the specific reaction rate (constant) and is 

given by the Arrhenius Equation. 

where: 
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Arrhenius Equation 
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where: 
E = Activation energy (cal/mol) 

R = Gas constant (cal/mol*K) 

T = Temperature (K) 

A = Frequency factor (same units as rate constant k) 

(units of A, and k, depend on overall reaction order) 



Reaction Coordinate 
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The activation energy can be thought of as a barrier 

to the reaction. One way to view the barrier to a 

reaction is through the reaction coordinates. These 

coordinates denote the energy of the system as a 

function of progress along the reaction path. For the 

reaction: 

 CABCBABCA  ::::::

The reaction coordinate is: 
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Collision Theory 
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Why is there an Activation Energy? 
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We see that for the reaction to occur, the reactants 

must overcome an energy barrier or activation 

energy EA. The energy to overcome their barrier 

comes from the transfer of the kinetic energy from 

molecular collisions to internal energy (e.g. 

Vibrational Energy). 

 
1. The molecules need energy to disort or stretch 

their bonds in order to break them and thus form 

new bonds 

2. As the reacting molecules come close together 

they must overcome both stearic and electron 

repulsion forces in order to react. 



Distribution of Velocities 

24 

 We will use the Maxwell-Boltzmann Distribution of 

Molecular Velocities. For a species af mass m, 

the Maxwell distribution of velocities (relative 

velocities) is: 

 

 

 

 

f(U,T)dU represents the fraction of velocities 

between U and (U+dU).   
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Distribution of Velocities 

25 

 

 

 

 

 

 

A plot of the distribution function, f(U,T), is shown 

as a function of U: 

Maxwell-Boltzmann Distribution of velocities. 
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Distribution of Velocities 
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Given 
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f(E,T)dE represents the fraction of collisions that 
have energy between E and (E+dE) 
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One such distribution of energies is in the following figure: 

f(E,T)dE=fraction of molecules with energies between E+dE 
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End of Lecture 3 
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Supplementary Material 
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Supplementary Material 

30 

For a fixed AC distance as B moves away from C the distance of 

separation of B from C, rBC increases as N moves closer to A. As 

rBC increases rAB decreases and the AB energy first decreases 

then increases as the AB molecules become close. Likewise as B 

moves away from A and towards C similar energy relationships 

are found. E.g., as B moves towards C from A, the energy first 

decreases due to attraction then increases due to repulsion of the 

AB molecules as they come closer together. We now 

superimpose the potentials for AB and BC to form the following 

figure: 

One can also view the reaction coordinate as variation of the BC 

distance for a fixed AC distance: 
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Supplementary Material 
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