Lecture 8

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 8 - Tuesday 2/5/2013

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine
- Pressure Drop
- Liquid Phase Reactions
- Gas Phase Reactions
- Engineering Analysis of Pressure Drop

Pressure Drop in PBRs

Concentration Flow System: $\quad C_{A}=\frac{F_{A}}{v}$

Gas Phase Flow System:

$$
v=v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}
$$

$$
C_{A}=\frac{F_{A}}{v}=\frac{F_{A 0}(1-X)}{v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}}=\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} \frac{T_{0}}{T} \frac{P}{P_{0}}
$$

$$
C_{B}=\frac{F_{B}}{v}=\frac{F_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)}{v_{0}(1+\varepsilon X) \frac{T}{T_{0}} \frac{P_{0}}{P}}=\frac{C_{A 0}\left(\Theta_{B}-\frac{b}{a} X\right)}{(1+\varepsilon X)} \frac{T_{0}}{T} \frac{P}{P_{0}}
$$

Pressure Drop in PBRs

Note: Pressure Drop does NOT affect liquid phase reactions
Sample Question:
Analyze the following second order gas phase reaction that occurs isothermally in a PBR:

$$
A \rightarrow B
$$

Mole Balances

Must use the differential form of the mole balance to separate variables:

$$
F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime}
$$

Rate Laws
Second order in A and irreversible: $-r_{A}{ }^{\prime}=k C_{A}^{2}$

Pressure Drop in PBRs

Stoichiometry

$$
C_{A}=\frac{F_{A}}{v}=C_{A 0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}} \frac{T_{0}}{T}
$$

Isothermal, $\mathrm{T}=\mathrm{T}_{0} \quad C_{A}=C_{A 0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_{0}}$

Combine:

$$
\frac{d X}{d W}=\frac{k C_{A 0}^{2}}{F_{A 0}} \frac{(1-X)^{2}}{(1+\varepsilon X)^{2}}\left(\frac{P}{P_{0}}\right)^{2}
$$

Need to find $\left(P / P_{0}\right)$ as a function of W (or V if you have a PFR)

Pressure Drop in PBRs

Constant mass flow: $\quad \dot{m}=\dot{m}_{0}$

$$
\begin{gathered}
\rho v=\rho_{0} v_{0} \\
\rho=\rho_{0} \frac{v_{0}}{v} \\
v=v_{0} \frac{F_{T}}{F_{T 0}} \frac{P_{0}}{P} \frac{T}{T_{0}} \\
v=v_{0}(1+\varepsilon X) \frac{P_{0}}{P} \frac{T}{T_{0}}
\end{gathered}
$$

Pressure Drop in PBRs

Variable Density $\quad \rho=\rho_{0} \frac{P}{P_{0}} \frac{T_{0}}{T} \frac{F_{T 0}}{F_{T}}$
$\frac{d P}{d z}=\frac{-G}{\rho_{0} g_{c} D_{p}}\left(\frac{1-\phi}{\phi^{3}}\right)\left[\frac{150(1-\phi) \mu}{D_{p}}+1.75 G\right] \frac{P_{0}}{P} \frac{T}{T_{0}} \frac{F_{T}}{F_{T 0}}$

Let

$$
\beta_{0}=\frac{G}{\rho_{0} g_{c} D_{p}}\left(\frac{1-\phi}{\phi^{3}}\right)\left[\frac{150(1-\phi) \mu}{D_{p}}+1.75 G\right]
$$

Pressure Drop in PBRs

Catalyst Weight $\quad W=z A_{c} \rho_{b}=z A_{c}(1-\phi) \rho_{c}$
Where $\quad \rho_{b}=$ bulk density
$\rho_{c}=$ solid catalyst density
$\phi=$ porosity (a.k.a., void fraction)
$(1-\phi)=$ solid fraction
$\frac{d P}{d W}=\frac{-\beta_{0}}{A_{c}(1-\phi) \rho_{c}} \frac{P_{0}}{P} \frac{T}{T_{0}} \frac{F_{T}}{F_{T 0}}$
Let $\quad \alpha=\frac{2 \beta_{0}}{A_{c}(1-\phi) \rho_{c}} \frac{1}{P_{0}}$

Pressure Drop in PBRs

$$
\frac{d y}{d W}=-\frac{\alpha}{2 y} \frac{T}{T_{0}} \frac{F_{T}}{F_{T 0}} \quad y=\frac{P}{P_{0}}
$$

We will use this form for single reactions:

$$
\frac{d\left(P / P_{0}\right)}{d W}=-\frac{\alpha}{2} \frac{1}{\left(P / P_{0}\right)} \frac{T}{T_{0}}(1+\varepsilon X)
$$

$$
\frac{d y}{d W}=-\frac{\alpha}{2 y} \frac{T}{T_{0}}(1+\varepsilon X)
$$

$$
\frac{d y}{d W}=-\frac{\alpha}{2 y}(1+\varepsilon X)
$$

Pressure Drop in PBRs

$$
\frac{d X}{d W}=\frac{k C_{A 0}^{2}(1-X)^{2}}{F_{A 0}(1+\varepsilon X)^{2}} y^{2}
$$

$$
\frac{d X}{d W}=f(X, P) \text { and } \frac{d P}{d W}=f(X, P) \text { or } \frac{d y}{d W}=f(y, X)
$$

The two expressions are coupled ordinary differential equations. We can only solve them simultaneously using an ODE solver such as Polymath. For the special case of isothermal operation and epsilon $=0$, we can obtain an analytical solution.
Polymath will combine the Mole Balances, Rate Laws and Stoichiometry.

Packed Bed Reactors

$\begin{array}{ll}\text { For } & \varepsilon=0 \\ \frac{d y}{d W} & =\frac{-\alpha}{2 y}(1+\varepsilon X)\end{array}$
When $W=0 \quad y=1$
$d y^{2}=-\alpha d W$
$y^{2}=(1-\alpha W)$
$y=(1-\alpha W)^{1 / 2}$

1) Pressure Drop in a PBR

(2) Concentration Profile in a PBR
$\mathrm{C}_{\mathrm{A}} \left\lvert\, \quad C_{A}=C_{A 0}(1-X) \frac{P}{P_{0}}\right.$
(3) Reaction Rate in a PBR

4 Conversion in a PBR

5 Flow Rate in a PBR

$$
\begin{gathered}
v=v_{0}(1+\varepsilon X) \frac{P_{0}}{P} \frac{T}{T_{0}} \\
T=T_{0} \quad y=\frac{P_{0}}{P} \\
f=\frac{v_{0}}{v}=\frac{1}{(1+\varepsilon X) y}
\end{gathered}
$$

Example 1:
 Gas Phase Reaction in PBR for $\boldsymbol{\delta}=\mathbf{0}$

Gas Phase reaction in PBR with $\delta=0$ (Analytical Solution)

$$
A+B \rightarrow 2 C
$$

Repeat the previous one with equimolar feed of A and B and:
$k_{\mathrm{A}}=1.5 \mathrm{dm} \mathrm{m}^{6} / \mathrm{mol} / \mathrm{kg} / \mathrm{min} \quad C_{A 0}=C_{B 0}$ $\alpha=0.0099 \mathrm{~kg}^{-1}$

Find X at 100 kg

Example 1:

Gas Phase Reaction in PBR for $\boldsymbol{\delta}=\mathbf{0}$

1) Mole Balance $\quad \frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A 0}}$
2) Rate Law $-r_{A}^{\prime}=k C_{A} C_{B}$
3) Stoichiometry

$$
\begin{aligned}
& C_{A}=C_{A 0}(1-X) y \\
& C_{B}=C_{A 0}(1-X) y
\end{aligned}
$$

Example 1:

Gas Phase Reaction in PBR for $\delta=0$

$$
\begin{array}{ll}
\frac{d y}{d W}=-\frac{\alpha}{2 y} \quad 2 y d y=-\alpha d W \\
W=0 \quad, y=1 & y^{2}=1-\alpha W
\end{array}
$$

$$
y=(1-\alpha W)^{1 / 2}
$$

4) Combine

$$
\begin{aligned}
& -r_{A}=k C_{A 0}^{2}(1-X)^{2} y^{2}=k C_{A 0}^{2}(1-X)^{2}(1-\alpha W) \\
& \frac{d X}{d W}=\frac{k C_{A 0}^{2}(1-X)^{2}(1-\alpha W)}{F_{A 0}}
\end{aligned}
$$

Example 1:

Gas Phase Reaction in PBR for $\delta=0$

$$
\begin{aligned}
& \frac{d X}{(1-X)^{2}}=\frac{k C_{A 0}^{2}}{F_{A 0}}(1-\alpha W) d W \\
& \frac{X}{1-X}=\frac{k C_{A 0}^{2}}{F_{A 0}}\left(W-\frac{\alpha W^{2}}{2}\right) \\
& W=0, X=0, W=W, X=X \\
& X=0.6(\text { with pressure drop }) \\
& X=0.75(\text { without pressure drop,i.e. } \alpha=0)
\end{aligned}
$$

Example 2:
 Gas Phase Reaction in PBR for $\delta \neq 0$

The reaction

$$
A+2 B \rightarrow C
$$

is carried out in a packed bed reactor in which there is pressure drop. The feed is stoichiometric in A and B.

$$
\begin{aligned}
& \mathrm{P}_{0}=10 \mathrm{~atm} \\
& \mathrm{~F}_{\mathrm{A} 0}=2 \mathrm{~mol} / \mathrm{min} \\
& \mathrm{C}_{\mathrm{A} 0}=0.2 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned} \rightarrow
$$

Plot the conversion and pressure ratio $\mathrm{y}=\mathrm{P} / \mathrm{P}_{0}$ as a function of catalyst weight up to 100 kg .

Additional Information
$\mathrm{k}_{\mathrm{A}}=6 \mathrm{dm}^{9} / \mathrm{mol}^{2} / \mathrm{kg} / \mathrm{min}$
$\alpha=0.02 \mathrm{~kg}^{-1}$

Example 2:

Gas Phase Reaction in PBR for $\boldsymbol{\delta} \neq 0$
$A+2 B \rightarrow C$

1) Mole Balance $\quad \frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A 0}}$
2) Rate Law

$$
-r_{A}^{\prime}=k C_{A} C_{B}^{2}
$$

3) Stoichiometry: Gas, Isothermal

$$
\begin{aligned}
v & =v_{0}(1+\varepsilon X) \frac{P_{0}}{P} \\
C_{A} & =C_{A 0} \frac{(1-X)}{(1+\varepsilon X)} y
\end{aligned}
$$

Example 2:

Gas Phase Reaction in PBR for $\delta \neq 0$
4) $C_{B}=C_{A 0} \frac{\left(\Theta_{B}-2 X\right)}{(1+\varepsilon X)} y$
5) $\frac{d y}{d W}=-\frac{\alpha}{2 y}(1+\varepsilon X)$
6) $f=\frac{v}{v_{0}}=\frac{(1+\varepsilon X)}{y}$
7) $\varepsilon=y_{A 0}[1-1-2]=\frac{1}{3}[-2]=-\frac{2}{3}$

$$
C_{A 0}=2, F_{A 0}=2, k=6, \alpha=0.02
$$

Initial values: $W=0, X=0, \quad y=1$
Final values: $W=100$
Combine with Polymath. If $\delta \neq 0$, polymath must be used to solve.

Example 2: Gas Phase Reaction in PBR for $\delta \neq 0$

POLYMATH Results

POLYMATH Report 01-30-2006, Rev5.1.233
Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
W	0	0	100	100
X	0	0	0.8587763	0.8587763
Y	1	0.1148659	1	0.1148659
eps	-0.6666667	-0.6666667	-0.6666667	-0.6666667
Cao	0.2	0.2	0.2	0.2
Theatab	2	2	2	2
Cb	0.4	0.0151789	0.4	0.0151789
Fao	2	2	2	2
k	6	6	6	6
Ca	0.2	0.0075895	0.2	0.0075895
alphe	0.02	0.02	0.02	0.02
ra	-0.192	-0.192	-1.049E-05	$-1.049 \mathrm{E}-05$

ODE Report (RKF45)

Differential equations as entered by the user
[1] $d(X) / d(M)=-r a / F a o$
[2] $d(y) / d(M)=-$ alpha* $\left(1+e p s^{*} \alpha\right) / 2 / M$
Explicit equations as entered by the user
[1] eps $=(1-2-1) / 3$
[2] $\mathrm{Cao}=0.2$
[3] TheataB = 2
[4] $\mathrm{Cb}=\mathrm{CaO}{ }^{*}\left(\right.$ TheataB- $\left.2^{*} \mathrm{X}\right) /\left(1+\mathrm{eps}{ }^{*} \mathrm{X}\right)^{*} \mathrm{y}$
[5] $\mathrm{Fao}=2$
[6] $\mathrm{k}=6$
[7] $\mathrm{Ca}=\mathrm{Cao}{ }^{*}(1-\mathrm{x}) /\left(1+\mathrm{eps}{ }^{*} \mathrm{X}\right)^{*} \mathrm{y}$
[8] alpha $=0.02$
$191 \mathrm{ra}=-\mathrm{k}^{*} \mathrm{Ca}^{*} \mathrm{Cb}^{\wedge} 2$

Example 2:

Gas Phase Reaction in PBR for $\delta \neq 0$

Gas Phase Reaction in PBR with Pressure Drop $T=T_{0}$

Mole Balance

$$
\begin{equation*}
\frac{\mathrm{dX}}{\mathrm{dW}}=-\mathrm{r}_{\mathrm{A}}^{\prime} / \mathrm{F}_{\mathrm{A} 0} \tag{1}
\end{equation*}
$$

Rate Law

$$
\begin{equation*}
-\mathrm{r}_{\mathrm{A}}^{\prime}=\mathrm{k} \mathrm{C}_{\mathrm{A}} \tag{2}
\end{equation*}
$$

Stoichiometry Gas $T=T_{0}$
$C_{A}=\frac{C_{A 0}(1-X)}{(1+\varepsilon X)} y$

$$
\begin{equation*}
\frac{d y}{d w}=-\frac{\alpha(1+\varepsilon X)}{2 y} \tag{4}
\end{equation*}
$$

Parameters, $\varepsilon, \alpha, \ldots$

Combine: Polymath with combine for you

Robert the Worrier wonders: What if we increase the catalyst size by a factor of 2 ?

Robert

Pressure Drop

Engineering Analysis

$$
\begin{aligned}
& \alpha=\frac{2}{\mathrm{~A}_{\mathrm{C}}(1-\phi) \rho_{\mathrm{C}} \mathrm{P}_{0}} \beta_{0}=\frac{2}{\mathrm{~A}_{\mathrm{C}}(1-\phi) \rho_{\mathrm{C}} \mathrm{P}_{0}}[\frac{\mathrm{G}(1-\phi)}{\rho_{0} g_{\mathrm{C}} \mathrm{D}_{\mathrm{P}} \phi^{3}}[\frac{\overbrace{1 \text { Laminar }}^{150(1-\phi) \mu}}{\mathrm{D}_{\mathrm{P}}}+\overbrace{1.75 \mathrm{G}}^{\text {Turbulent }}] \\
& \rho_{0}=M W * C_{T 0}=\frac{M W * P_{0}}{R T_{0}} \\
& \alpha=\frac{2 R T_{0}}{A_{C} \rho_{C} g_{C} P_{0}^{2} D_{P} \phi^{3} M W} G\left[\frac{150(1-\phi) \mu}{D_{P}}+1.75 G\right] \\
& \alpha \approx\left(\frac{1}{P_{0}}\right)^{2}
\end{aligned}
$$

Pressure Drop

Engineering Analysis

A. Laminar Flow Dominant (Term $1 \gg$ Term 2)

$$
\alpha \sim \frac{G}{\mathrm{~A}_{\mathrm{C}} \mathrm{D}_{\mathrm{P}}^{2} \mathrm{P}_{0}^{2}}
$$

Case 1 / Case 2

$$
\alpha_{2}=\alpha_{1}\left(\frac{\mathrm{G}_{2}}{\mathrm{G}_{1}}\right)\left(\frac{\mathrm{A}_{\mathrm{C} 1}}{\mathrm{~A}_{\mathrm{C} 2}}\right)\left(\frac{\mathrm{D}_{\mathrm{P} 1}}{\mathrm{D}_{\mathrm{P} 2}}\right)^{2}\left(\frac{\mathrm{P}_{01}}{\mathrm{P}_{02}}\right)^{2}
$$

Example
How will the pressure drop (e.g., α) change if you decrease the particle diameter by a factor of 4 and increase entering pressure by a factor of 3

$$
\begin{gathered}
D_{P 2}=\frac{1}{4} D_{P 1} \text { and } P_{02}=3 P_{01} \\
\alpha_{2}=\alpha_{1}\left(\frac{D_{P 1}}{\frac{1}{4} D_{P 1}}\right)^{2}\left(\frac{P_{01}}{3 P_{01}}\right)^{2}=\frac{16}{9} \alpha_{1}
\end{gathered}
$$

Pressure Drop

Engineering Analysis

B. Turbulent Flow Dominates (Term $2 \gg$ Term 1)

$$
\begin{gathered}
\alpha \sim \frac{G^{2}}{A_{C} D_{P} P_{0}^{2}} \\
\alpha_{2}=\alpha_{1}\left(\frac{G_{2}}{G_{1}}\right)^{2}\left(\frac{A_{C 1}}{A_{C 2}}\right)\left(\frac{P_{01}}{P_{02}}\right)^{2}\left(\frac{D_{P 1}}{D_{\mathrm{P} 2}}\right) \\
D_{\mathrm{P} 2}=\frac{1}{4} D_{\mathrm{P} 1} \text { and } \mathrm{P}_{02}=3 \mathrm{P}_{01} \\
\alpha_{2}=\alpha_{1}\left(\frac{D_{P 1}}{\frac{1}{4} D_{P 1}}\right)\left(\frac{P_{01}}{3 P_{01}}\right)^{2}=\frac{4}{9} \alpha_{1}
\end{gathered}
$$

End of Lecture 8

Pressure Drop - Summary

- Pressure Drop
- Liquid Phase Reactions

Pressure Drop does not affect concentrations in Iquid phase reactions.

- Gas Phase Reactions

Epsilon does not equal to zero
$d(P) / d(W)=\ldots$
Polymath will combine with $d(X) / d(W)=\ldots$ for you
Epsilon = 0 and isothermal
$\mathrm{P}=\mathrm{f}(\mathrm{W})$
Combine then separate variables (X, W) and integrate
Engineering Analysis of Pressure Drop

Pressure Change - Molar Flow Rate

$$
\begin{aligned}
& \frac{d P}{d W}=-\frac{\beta_{0} \frac{F_{T}}{F_{T 0}} \frac{P_{0}}{P} \frac{T}{T_{c}}}{\rho A_{c}(1-\varphi) \rho_{c}} \\
& \frac{d y}{d W}=-\frac{\beta_{0} \frac{F_{T}}{\mathrm{~F}_{\mathrm{T} 0}} \frac{T}{\mathrm{yP}_{0} A_{c}(1-\varphi) \rho_{\mathrm{c}}}}{} \quad \alpha=\frac{2 \beta_{0}}{P_{0} A_{\mathrm{C}}(1-\varphi) \rho_{\mathrm{C}}} \\
& \frac{d y}{d W}=-\frac{\alpha}{2 y} \frac{\mathrm{~F}_{\mathrm{T}}}{\mathrm{~F}_{\mathrm{T} 0}} \frac{\mathrm{~T}}{\mathrm{~T}_{0}} \quad \begin{array}{l}
\text { Use for heat effects, } \\
\text { multiple rxns }
\end{array} \\
& \frac{\mathrm{F}_{\mathrm{T}}}{\mathrm{~F}_{\mathrm{T} 0}}=(1+\varepsilon X) \quad \text { sothermal: } \mathrm{T}=\mathrm{T}_{0} \quad \frac{d X}{\mathrm{dW}}=-\frac{\alpha}{2 \mathrm{y}}(1+\varepsilon X)
\end{aligned}
$$

Example 1:

Gas Phase Reaction in PBR for $\boldsymbol{\delta}=\mathbf{0}$
$A+B \rightarrow 2 C$
$k=1.5 \frac{\mathrm{dm}}{}{ }^{6} \mathrm{~mol} \cdot \mathrm{~kg} \cdot \mathrm{~min} \quad, \alpha=0.0099 \mathrm{~kg}^{-1} \quad, \quad C_{B 0}=C_{A 0}$
Case 1: $W=100 \mathrm{~kg}, \quad X=? \quad, \quad P=$?
Case 2: $D_{P}=2 D_{P 1} \quad, \quad P_{02}=\frac{1}{2} P_{01} \quad, \quad X=? \quad, \quad P=$?

PBR

$$
\begin{aligned}
& F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime} \\
& r_{A}=-k C_{A} C_{B} \\
& C_{A}=\frac{F_{A}}{F_{T}} y \\
& C_{A}=C_{B} \\
& \delta=0 \text { and } T=T_{0} \quad \therefore y=(1-\alpha W)^{1 / 2}
\end{aligned}
$$

