ChE 344

Chemical Reaction Engineering
 Winter 2000
 Exam I
 Solutions

Part 1, Closed Book

Name \qquad

Honor Code

Signed
[Don't sign until the end of the exam]
1)
2)
3)
4) ___ $/ 10 \mathrm{pts}$
5) ___ $/ 15 \mathrm{pts}$
6) ___/ 5 pts

Total 80 pts

1. Simpsm's Three-eighths rule (4points)
$1 \chi_{0}^{3} f(x) d x=\frac{3}{8} h\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f^{f}\left(x_{3}\right)\right]$

$$
\frac{d y}{d W}=-\frac{a}{\partial y E_{T 0}} \frac{F_{T}}{2 F_{T 0} T}=\frac{i}{E_{0}}
$$

3. Integrals
$\ln \frac{d X}{1-X}=\ln \frac{1}{1-X}$
$\operatorname{ld} \frac{1+e x}{(1-X)^{2}} d X=\frac{(1+e k}{1-X}-e \ln \frac{1}{1-X}$
$\emptyset_{0}^{x} \frac{d X}{(1-X)^{Y}}=\frac{X}{1-X}$
$\operatorname{ld} \frac{(1+e x)^{2}}{(1-x)^{2}} d x=2(1+e) \ln (1-x)+e^{2} x+\frac{(1+e)^{2} x}{1-x}$
$\operatorname{l} \frac{d X}{1+e X}=\frac{1}{e} \ln (1+e X)$
$\operatorname{lf} \frac{1+e X}{1-X} d X=(1+e) \ln \frac{1}{1-X}-e X$
$L_{f}^{x} \frac{d x}{(1-x)\left(q_{\theta}-x\right)}=\frac{1}{q_{\theta}-1} \ln \frac{q_{\theta}-x}{q_{\theta}(1-x)} \quad q_{\theta} \Pi 1$
$\operatorname{lf}_{d} \frac{d X}{a X^{2}+b X+c}=\frac{-2}{2 X+b}+\frac{2}{b}$
for $b^{2}=4 c \quad$ where p and q are the roots of the equation.
$\operatorname{lf}^{W}(1-a W)^{\mu^{2}} d W=\frac{2}{3 a}\left[1-(1-a W)^{32}\right] \quad a X^{2}+b X+c=0$ i.e., $p, A=\frac{-b m \sqrt{b^{2}-4 c}}{2}$

4. Finite Difference
5. Ideal Gas Constant

$$
\begin{aligned}
& R=\frac{8309 \mathrm{kPa} \mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \mathrm{R}=\frac{1.987 \mathrm{BTU}}{1 \mathrm{bmol} \cdot \mathrm{c}_{\mathrm{s}}} \\
& R=\frac{0.73 \mathrm{ft}^{3} \cdot \mathrm{gtm}}{1 \mathrm{bmol} \cdot \mathrm{c} \text { 右 }} \\
& \mathrm{R}=\frac{8.314 \mathrm{~A}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& R=008 \frac{\text { ite } \frac{\text { itm }}{\text { mol }} \cdot \mathrm{K}}{}=\frac{008 \mathrm{~m}^{5} \bullet a t m}{\mathrm{kmol} \cdot \mathrm{~K}} \\
& \mathrm{R}=\frac{1.98 \mathrm{zal}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

Volume of Ideal Gas
1 lbmol of an ideal gasat $32^{\circ} \mathrm{F}$ and 1 atm occupies $359 \mathrm{ft}^{3}$.,
1 g mol of an ideal gas at $0^{\circ} \mathrm{C}$ and $1 \mathrm{atmoccupies} 22.4 \mathrm{dm}^{3}$.
(10\%) 1) The adiabatic exothermic irreversible gas phase reaction

$$
2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}
$$

is to be carried out in a flow reactor for an equilmolar feed of A and B.

Additional Information

a) What is ε, the volume change parameter?

Equimolar feed of A and B. Base all calculations on limiting reactant, A.
$\varepsilon=y_{A o} \delta, y_{A o}=0.5, \delta=1-1-.05=-0.5$
$\varepsilon=(0.5)(-.5)=-0.25$

$$
\varepsilon=\underline{-0.25}
$$

b) What PFR volume is necessary to achieve 50% conversion?

$V_{P F R}=F_{A o} \int_{0}^{0.5} \frac{d x}{-r_{A}}=$ area under curve
$V_{P F R}=(100 * 0.5)+0.5 *(400 * 0.5)=150$

$$
\mathrm{V}_{1}=\underline{150 \mathrm{dm}^{3}}
$$

c) What CSTR volume is necessary to achieve 50% conversion?

CSTR, therefore volume calculated using conditions at the exit (i.e. $X=0.5$)

$V_{C S T R}=\frac{F_{A o}\left(X_{\text {out }}-X_{\text {in }}\right)}{-r_{\text {Ao,exit }}} 0.5 * 100=50$

$$
\mathrm{V}_{1}=50 \mathrm{dm}^{3}
$$

continued
d) What CSTR volume must be added to raise the conversion in Part (c) to 80% ?

$$
\mathrm{V}_{2}=\underline{150 \mathrm{dm}^{3}}
$$

$V_{2}=\left(X_{2}-X_{1}\right) * \frac{F_{A o}}{-r_{A}}=(0.8-0.5) *(500)=150$
e) What PFR volume must be added to raise the conversion in

Part (c) to 80% ?
$V_{2}=90 \mathrm{dm}^{3}$

$$
V_{2}=\int_{0.5}^{0.8} \frac{F_{A 0} d X}{-r_{A}}=(0.8-0.5) *(100)+0.5 *(0.8-0.5) *(400)=90
$$

(10\%) 2) The elementary irreversible gas reaction

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \longrightarrow \mathrm{C}(\mathrm{~g}, \mathrm{l})
$$

is carried out isothermally in a PFR in which there is no pressure drop. As the reaction proceeds the partial pressure of C builds up and a point is reached at which C begins to condense. The vapor pressure of C is 0.4 atm . What is the rate of reaction at the point at which C first starts to condense. The feed is equal molar in A and B, there are no inerts or other species entering the reactor and the total pressure at the entrance is 2 atm .

Additional Information

$$
\begin{aligned}
& C_{A 0}=0.02 \mathrm{~mol} / \mathrm{dm}^{3} \\
& k_{A}=100 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}
\end{aligned}
$$

Ans

$$
-\mathrm{r}_{\mathrm{A}}=2.56 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~min}
$$

Find X where C begins to condense $\left(X_{\text {cond }}\right)$
$F_{A}=F_{A o}(1-X)$
$F_{B}=F_{A o}(1-X)$
$F_{C}=F_{A o}(X)$
$F_{T}=F_{A}+F_{B}+F_{C}=F_{A o}(2-X)$
$y_{C, \text { cond }}=\frac{P_{C, \text { cond }}}{P_{T}}=\frac{0.4}{2}=0.2=\frac{F_{C, \text { cond }}}{F_{T, \text { cond }}}=\frac{F_{A o} X_{\text {cond }}}{F_{A o}\left(2-X_{\text {cond }}\right)}$
$\frac{X_{\text {cond }}}{2-X_{\text {cond }}}=0.2 \Rightarrow X_{\text {cond }}=\frac{0.4}{1.2}=\frac{1}{3}$
Now proceed to the rate law
$-r_{A}=k_{A} C_{A} C_{B}$
$C_{A}=\frac{C_{A o}(1-X)}{(1+\varepsilon X)}=C_{B}$
$\varepsilon=y_{A o} \delta=0.5^{*}(1-1-1)=-0.5$
$-r_{A}=k_{A} \frac{C_{A o}^{2}(1-X)^{2}}{(1+\varepsilon X)^{2}}=100 \frac{\mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~min}} \frac{\left(0.02 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}}\right)^{2}(1-1 / 3)^{2}}{(1+(-1 / 2)(1 / 3))^{2}}=2.56 \frac{\mathrm{~mol}}{\mathrm{dm}^{3} \cdot \mathrm{~min}}$ for this first-order reaction as $0.00152 \mathrm{~s}^{-1}$ at $200^{\circ} \mathrm{F}$ and $0.0740 \mathrm{~s}^{-1}$ at $300^{\circ} \mathrm{F}$. At what temperature should the reactor be operated to give a conversion of A of 80% with a feed rate of $500 \mathrm{lb} / \mathrm{h}$ of pure A and an operating pressure of 100 psig ? A has a molecular weight of 73 . Departures from perfect gas behavior may be neglected, and the reverse reaction is insignificant at these conditions.

Ans

$$
\mathrm{T}=\underline{278}{ }^{\circ} \mathrm{F} \text { or } 738^{\circ} \mathrm{R}
$$

$V_{\text {total }}=N_{\text {tubes }}\left[\pi r^{2} L\right]=50\left[\pi\left(\frac{0.75 \mathrm{in}}{2}\right)^{2}\left(\frac{40 \mathrm{ft}}{1 \mathrm{ft} / 12 \mathrm{in}}\right)\right]=10603 \mathrm{in}^{3}=6.14 \mathrm{ft}^{3}$
$F_{A o}=\frac{500 \mathrm{lb} / \mathrm{hr}}{73 \mathrm{lb} / \mathrm{lbmol}}=6.85 \mathrm{lbmol} / \mathrm{hr}$
Mole Balance, Rate Law, Stoichiometry, Combine
$V=F_{A o} \int \frac{d X_{A}}{-r_{A}},-r_{A}=k C_{A}, C_{A}=C_{A o}(1-X), V=F_{A o} \int \frac{d X_{A}}{k C_{A o}(1-X)}$
$V=\frac{F_{A o}}{k C_{A o}} \ln \left(\frac{1}{1-X}\right) \Rightarrow k=\frac{F_{A o}}{V C_{A o}} \ln \left(\frac{1}{1-X}\right)$
$C_{A o}=\frac{y_{A o} P_{o}}{R T_{o}}, P_{o}=100 p s i g+14.7=114.7 p s i a=7.8 \mathrm{~atm}, \mathrm{y}_{\mathrm{Ao}}=1$
$k=\frac{F_{A o} R T_{o}}{V P_{o}} \ln \left(\frac{1}{1-X}\right)=\frac{6.85 * 0.73 * T_{o}}{6.14 * 7.8} \ln \left(\frac{1}{0.2}\right)=0.168 * T_{o}$
$k=k(T)=A e^{\frac{-E}{R T}}$ use given k values to find E and A
$\ln \left(\frac{k_{1}}{k_{2}}\right)=\frac{E}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \Rightarrow \ln \left(\frac{0.00152}{0.074}\right)=\frac{E}{R}\left[\frac{1}{760^{\circ} R}-\frac{1}{660^{\circ} R_{1}}\right] \Rightarrow \frac{E}{R}=19498^{\circ} R$
$A=k e^{\frac{E}{R T}}=\left(\frac{0.00152}{s} * \frac{3600 s}{h r}\right) \exp \left(\frac{19489}{660}\right)=3.65 E^{13} h r^{-1}$
$k=3.65 E^{13} h r^{-1} \exp \left(\frac{19489}{T_{o}}\right)$
Now set the two expressions for k equal to each other and solve for T_{o}
$0.168 T_{o}=3.65 E^{13} h r^{-1} \exp \left(\frac{19489}{T_{o}}\right)$
Iterate to solve for T_{o} (or use solver)
$T_{o}=738^{\circ} \mathrm{R}=278^{\circ} \mathrm{F}$ membrane reactor packed with 100 kg of catalyst. The reaction is carried out isothermally and there is no pressure drop.

$$
\mathrm{A} \longleftrightarrow 2 \mathrm{~B}+\mathrm{D}
$$

The following is a sketch of the concentration profile in a conventional PBR

Figure 1
a) Suppose B diffuses out through the membrane. Using a dashed line (-----) sketch the concentration profiles in a membrane reactor for a moderate value of the mass transfer coefficient for $B, \mathrm{k}_{\mathrm{CB}}$, sketch the profiles of A, B and D on Figure 1.

The traces are shown in Figure 1, represented by the dotted lines and $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and D^{\prime} Final concentrations A^{\prime}, and B^{\prime} will be lower than PBR , while D^{\prime} will be greater
b) Now suppose that both B and D can diffuse out of the reactor, use a solid line (___) to sketch the profiles of A, B, and D on Figure 1. Assume the mass transfer coefficients of B and D are the same, $k_{C B}=k_{C D}$.

The traces are shown in Figure 1, represented by the solid lines and $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{D}^{\prime \prime}$ Final concentrations $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime \prime}$, and $\mathrm{C}^{\prime \prime}$ will all be lower than in a PBR. Final concentrations $A^{\prime \prime}$ and $B^{\prime \prime}$ are lower than final concentrations A^{\prime} and B^{\prime}
c) Suppose you could choose from two types of membranes, one in which only B would diffuse out, and one in which only D would diffuse out. In both cases the mass transfer coefficient would be very very very large. Which membrane would give the greatest conversion of A ?

Why?
According to Le Chatlier's Principle, you want to remove products to push reaction
forward. If you remove B, you are removing 2 moles. If you remove D, you are only
removing one mole. Therefore, you would want to remove B. Analytically:
$\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{To}} \frac{\mathrm{F}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{T}}}=\mathrm{C}_{\mathrm{To}} \frac{\mathrm{F}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{C}}}$
$-r_{A}=k\left[C_{A}-\frac{C_{B}^{2} C_{C}}{K_{C}}\right]$, keep C_{A} high
(15\%) 5) The irreversible gas phase reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow 2 \mathrm{C}
$$

is carried out in a PBR. The reaction is non-elementary in that it is first order in A and zero order in B. The feed is equal molar in A and B. and the pressure at the entrance is 10 atm and the pressure at the exit is 2 atm .

Additional Information

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{A} 0}=100 \mathrm{~mol} \mathrm{~s} \\
& \mathrm{k}=1 \frac{\mathrm{dm}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}} \\
& \mathrm{C}_{\mathrm{A} 0}=1 \mathrm{~mol} / \mathrm{dm}^{3}
\end{aligned}
$$

a) What is the conversion exiting the reactor? $\mathrm{X}=0.5$
b) If the flow were turbulent, what would be the pressure drop if the cross sectional area was increased by a factor of 2 and the particle size decreased by a factor of $10 ?$ All other conditions remain the same.

Pressure drop too great, no flow under these conditions

Find X
Mole Balance, Rate Law, Stoichiometry, Combine
$\frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A o}},-r^{\prime}{ }_{A}=k^{\prime} C_{A}, C_{A}=C_{A o}(1-X) \frac{P}{P_{o}}, \frac{d X}{d W}=\frac{k^{\prime} C_{A o}(1-X)}{F_{A o}} \frac{P}{P_{o}}$
$\varepsilon=0 \Rightarrow \frac{P}{P_{o}}=(1-\alpha W)^{\frac{1}{2}} \Rightarrow \frac{2}{10}=(1-\alpha * 100 \mathrm{~kg})^{\frac{1}{2}} \Rightarrow \alpha=0.0096 \mathrm{~kg}^{-1}$
$\frac{d X}{d W}=\frac{k^{\prime} C_{A o}(1-X)}{F_{A o}}(1-\alpha W)^{\frac{1}{2}} \Rightarrow \frac{d X}{1-X}=\frac{k^{\prime} C_{A o}}{F_{A o}}(1-\alpha W)^{\frac{1}{2}} d W \Rightarrow \int_{0}^{X} \frac{d X}{1-X}=\frac{k^{\prime} C_{A o}}{F_{A o}} \int_{0}^{100 k g}(1-\alpha W)^{\frac{1}{2}} d W$
$\ln \left(\frac{1}{1-X}\right)=\frac{k^{\prime} C_{A o}}{F_{A o}} \frac{2}{3 \alpha}\left[1-(1-\alpha W)^{\frac{3}{2}}\right]_{0}^{100 k g} \Rightarrow \ln \left(\frac{1}{1-X}\right)=\frac{1 * 1}{100} \frac{2}{3 * 0.0096}\left[1-\left(1-0.0096^{*} 100\right)^{\frac{3}{2}}\right]=0.6938$
$\frac{1}{1-X}=2.00 \Rightarrow X=0.5$

Find the new α
$\alpha \sim \frac{\beta_{\mathrm{o}}}{\mathrm{A}_{\mathrm{C}}}, \beta_{\mathrm{o}} \sim \frac{G^{2}}{D_{p}}$ (for turbulent flow), $G \sim \frac{1}{\mathrm{~A}_{\mathrm{C}}}$
Combining yields $\alpha \sim \frac{1}{\mathrm{~A}_{\mathrm{C}}^{3} D_{p}}$
$\mathrm{A}_{\mathrm{C}, 2}=2 \mathrm{~A}_{\mathrm{C}, 1}, D_{p, 2}=\frac{1}{10} D_{p, 1}$
$\frac{\alpha_{1}}{\alpha_{2}}=\frac{\mathrm{A}_{\mathrm{C}, 2}^{3} D_{p, 2}}{\mathrm{~A}_{\mathrm{C}, 1}^{3} D_{p, 1}}=\frac{8 \mathrm{~A}_{\mathrm{C}, 1}^{3} \frac{1}{10} D_{p, 1}}{\mathrm{~A}_{\mathrm{C}, 1}^{3} D_{p, 1}}=\frac{8}{10} \Rightarrow \alpha_{2}=\frac{10}{8} \alpha_{1}$
Calculate new pressure drop
$\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{o}}}=\left(1-\alpha_{2} W\right)^{\frac{1}{2}}=\left(1-\frac{10}{8} \alpha_{1} W\right)^{\frac{1}{2}}=\left(1-\frac{10}{8} 0.0096^{*} 100\right)^{\frac{1}{2}}=(-0.2)^{\frac{1}{2}}=$ imaginary numbers
Pressure drop will be too great, no flow under these conditions
(5%) 6) Below is a sketch showing the exit conversion as a function of catalyst particle size in a packed bed reactor.

Why does the conversion increase with increasing particle size in region A ? Decreasing pressure drop with increasing particle size. Increasing pressure, therefore increases concentration, increasing rate of reaction, thus increasing conversion

Why does the conversion decrease with increasing particle size in region B ? Larger particles the smaller the effective rate of reaction; therefore, the smaller the conversion.

