ChE 344 Chemical Reaction Engineering Winter 1999 Exam I

Exam I Part 2 (20%)

Open Book, Notes, and Disk Closed Web

Name	
I have neither given nor received aid on this examination nor have I spent hour working on Part 2 of this exam.	: more than one
Signed	
Start Time	
Finish Time	

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

- the concentration of B is a maximum at
- the concentration of C is a maximum at
- W =
- (c) Explain why the curves look the way they do.
- Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$
 $k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$$W_f = 100 \text{ kg}$$

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

the concentration of B is a maximum at

the concentration of C is a maximum at

- Explain why the curves look the way they do. (c)
- (d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 0.2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{mir}$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$
 $k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$$W_f = 100 \text{ kg}$$

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

A
$$B+C$$
 $r_{1C} = k_{1C} C_A - \frac{C_B C_C}{K_{1C}}$

$$A \qquad \qquad D \qquad \qquad r_{2D} = k_{2D} \, C_A$$

$$2C + D \qquad \qquad 2E \qquad \qquad r_{3E} = k_{3E} \, \, C_C^2 C_D$$

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

- (a) the concentration of B is a maximum at W =
- <u>W = ____</u> the concentration of C is a maximum at
- Explain why the curves look the way they do. (c)
- Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient k_B = 5.0 dm³/kg cat•min

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

 $k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$$W_f = 100 \text{ kg}$$

 \mathbf{C}

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

$$A \qquad B+C \qquad \qquad r_{1C} = k_{1C} C_A - \frac{C_B C_C}{K_{1C}}$$

$$A \qquad D \qquad \qquad r_{2D} = k_{2D} C_A$$

$$2C + D 2E r_{3E} = k_{3E} C_C^2 C_D$$

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

- (a) the concentration of B is a maximum at W =
- **(b)** the concentration of C is a maximum at W =
- (c) Explain why the curves look the way they do.
- (d) Vary $k_{\rm 1C}$ (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient k_R = 1.0 dm³/kg cat•min

$$k_{1C} = 0.2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$$

$$W_f = 100 \text{ kg}$$

D

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

$$A \qquad B+C \qquad \qquad r_{1C} = k_{1C} \ C_A - \frac{C_B C_C}{K_{1C}}$$

$$A \qquad D \qquad \qquad r_{2D} = k_{2D} \ C_A$$

$$2C + D 2E r_{3E} = k_{3E} C_C^2 C_D$$

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

the concentration of B is a maximum at

 $\mathbf{W} =$

the concentration of C is a maximum at

W =

- Explain why the curves look the way they do.
- Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 10 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$
 $k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$
 $k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$$W_f = 100 \text{ kg}$$

E

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at

<u>W</u> =

(b) the concentration of C is a maximum at

<u>W</u> =

- (c) Explain why the curves look the way they do.
- (d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{3E} = 20 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$$

$$W_f = 100 \text{ kg}$$

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

(a) the concentration of B is a maximum at

<u>W</u> =

(b) the concentration of C is a maximum at

V =

- (c) Explain why the curves look the way they do.
- (d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$
 $k_{3E} = 10 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$

$$W_f = 100 \text{ kg}$$

G

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

the concentration of B is a maximum at

$$W =$$

the concentration of C is a maximum at

Explain why the curves look the way they do.

(d) Vary k_{1C} (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 15 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.4 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$$

$$W_f = 100 \text{ kg}$$

Η

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

- (a) the concentration of B is a maximum at
- W =
- **(b)** the concentration of C is a maximum at
- <u>W</u> =
- (c) Explain why the curves look the way they do.
- (d) Vary ${\bf k}_{\rm 1C}$ (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \text{ dm}^3/\text{kg cat} \cdot \text{min}$

$$k_{1C} = 2 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$K_{1C} = 0.2 \text{ mol/dm}^3$$

$$k_{2D} = 0.8 \text{ dm}^3/\text{kg cat} \cdot \text{min}$$

$$k_{3E} = 5 \text{ dm}^9/\text{mol}^2 \cdot \text{kg cat} \cdot \text{min}$$

$$W_f = 100 \text{ kg}$$

Ι

The gas phase reactions take place isothermally in a membrane reactor packed with catalyst. Pure A enters the reactor at 24.6 atm and 500K and a flow rate of A of 10 mol/min

Only species B diffuses out of the reactor through the membrane. At what point in the reactor is the

- (a) the concentration of B is a maximum at
- W =
- **(b)** the concentration of C is a maximum at
- <u>W</u> =
- (c) Explain why the curves look the way they do.
- (d) Vary $k_{\rm 1C}$ (.1 to 1000) and write a paragraph describing what you. Explain whether or not what you observe is reasonable.

Additional Information

Overall mass transfer coefficient $k_B = 1.0 \ dm^3/kg \ cat \bullet min$ $k_{1C} = 2 \ dm^3/kg \ cat \bullet min$ $K_{1C} = 0.2 \ mol/dm^3$ $k_{2D} = 2 \ dm^3/kg \ cat \bullet min$ $k_{3E} = 5 \ dm^9/mol^2 \bullet kg \ cat \bullet min$ $W_f = 100 \ kg$