Chemical Reaction Engineering Winter 2000

Exam II
Computer Portion

Name SOLUTION

Honor Code

Signed

1) ___ $/ 25 \mathrm{pts}$
2)
3) ___ $/ 50 \mathrm{pts}$

Total 100 pts

NOTE: Store your problem immediately after typing in the program and before typing $\Uparrow F 7$.

Saving While in POLYMATH:

Anytime after you enter your equations you may save them by hitting "shift-F8" from the equations screen. This will take you to a menu where you may type " S " to save your problem. When you type "S" you will be asked for a directory. Enter "A:". Then you will be asked for a filename. Type in the problem number (e.g. Pb 3). Be careful not to save over previous work (like accidentally saving problem 3 material over problem 2 material by using the same name). Once the file is saved, you can go back to working on your problem.

The option to do this will be listed on your screen. The procedure for loading saved problems is similar, you just type "L" rather than " S " at the appropriate step.

Note: At the end of the exam, after saving all your files to a disk, delete all your problems from the library.
(25%) 1) Let's go back to Problem 8-30 once more. Ethyl-benzene is fed at a rate (in the problem statement) of $0.00344 \mathrm{kmol} / \mathrm{s}$. The inlet steam to EB ratio is 14.5 to 1 . The inlet temperature is $\mathrm{To}=900 \mathrm{~K}$. All parameter values are the same as given in the problem. However, we now want to operate the reactor isothermally.
a) What is the required heat exchanger duty (in Watts, i.e. J / s) to achieve isothermal operation? Explain your result.
b) Now, say the inlet temperature is 500 K . How does the required heat exchanger duty change? How is it different from the previous case qualitatively? Explain your result.
[Hint: only two-three lines of Polymath code change/addition maybe required to answer part (a)] Isothermal Operation of PFR:
Isothermal $\Rightarrow \frac{\mathrm{dT}}{\mathrm{dV}}=0$
$\frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Q}+\sum \Delta \mathrm{H}_{\mathrm{ij}} \mathrm{r}_{\mathrm{ij}}}{\sum \mathrm{F}_{\mathrm{i}} \mathrm{C}_{\mathrm{Pi}}}=0$ where $\mathrm{Q}=\mathrm{Ua}\left(\mathrm{T}_{\mathrm{a}}-\mathrm{T}\right)$
$\Rightarrow|\mathrm{Q}|=\left|\sum \Delta \mathrm{H}_{\mathrm{ij}} \mathrm{r}_{\mathrm{ij}}\right|$
Below are the results and Polymath code

POLYMATH 5.0 Results

PROBLEM 1:

Calculated values of the DEO variables

Variable	initial value	minimal value	maximal value	final value
V	0	0	10	10
fb	0	0	0.0023026	0.0023019
fa	0.00344	$5.348 \mathrm{E}-04$	0.00344	$5.348 \mathrm{E}-04$
fc	0	0	0.0020592	0.0020335
fd	0	0	$3.348 \mathrm{E}-04$	$3.348 \mathrm{E}-04$
fe	0	0	$3.348 \mathrm{E}-04$	$3.348 \mathrm{E}-04$
ff	0	0	$2.685 \mathrm{E}-04$	$2.685 \mathrm{E}-04$
fg	0	0	2. $685 \mathrm{E}-04$	2. $685 \mathrm{E}-04$
T	900	900	900	900
$s x$	14.5	14.5	14.5	14.5
H1a	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$
H2a	1. $052 \mathrm{E}+05$	$1.052 \mathrm{E}+05$	1.052E+05	1.052E+05
H3a	-5.39E+04	$-5.39 \mathrm{E}+04$	$-5.39 \mathrm{E}+04$	$-5.39 \mathrm{E}+04$
P	2137	2137	2137	2137
phi	0.4	0.4	0.4	0.4
K1	0.3679746	0.3679746	0.3679746	0.3679746
fi	0.04988	0.04988	0.04988	0.04988
ft	0.05332	0.05332	0.0559568	0.0559568
Pc	0	0	0.0883967	0.0872159
Pa	0.1548387	0.0229362	0.1548387	0.0229362
Pb	0	0	0.0987702	0.0987311
rls	$9.748 \mathrm{E}-04$	-2.925E-06	$9.748 \mathrm{E}-04$	-2.925E-06
r2b	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$
rd	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$
re	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$	$9.634 \mathrm{E}-05$	$1.427 \mathrm{E}-05$
r3t	0	0	$3.994 \mathrm{E}-05$	1.697E-05
rf	0	0	$3.994 \mathrm{E}-05$	$1.697 \mathrm{E}-05$
rg	0	0	$3.994 \mathrm{E}=05$	$1.697 \mathrm{E}-05$
Qa	125.15695	0.24158	125.15695	0.24158
rb	$9.748 \mathrm{E}-04$	-2.925E-06	$9.748 \mathrm{~B}-04$	-2.925E-06
rc	$9.748 \mathrm{E}-04$	$-1.989 \mathrm{E}-05$	$9.748 \mathrm{E}-04$	-1.989E-05
ra	-0.0010711	-0.0010711	$-2.831 \mathrm{E}-05$	-2.831E-05

ODE Report (RKF45)

Differential equations as entered by the user
(1) $d(t b) / d(v)=$ b
(2) $d(t a) / d(v)=r a$
(3) $d(t c) / d(v)=r c$
[4] $\mathrm{d}(\mathrm{dd}) / \mathrm{d}(\mathrm{v})=\mathrm{rd}$
[5] $d(f 0) / d(v)=r e$
[6] $\mathrm{d}(\mathrm{ff}) / \mathrm{d}(\mathrm{v})=\mathrm{rf}$
[7] $\mathrm{d}(\mathrm{fg}) / \mathrm{d}(\mathrm{v})=\mathrm{rg}$
Explicit equations as entered by the user
(1) $T=900$
[2] $\mathrm{Br}=14.5$
[3] $\mathrm{H} 1 \mathrm{a}=118000$
(4) $\mathrm{H} 2 \mathrm{a}=105200$
[5] $\mathrm{H} 3 \mathrm{a}=-53900$
(6) $\mathrm{p}=2137$
[7] $\mathrm{phi}=.4$
[8) $\mathrm{K} 1=\exp \left(-17.34-1.302 \mathrm{e} / \mathrm{T}+5.051^{\circ} \ln (\mathrm{T})+\left(\left(-2.314 \mathrm{e}-10^{\circ} \mathrm{T}+1.302 \mathrm{e}-6\right)^{\circ} \mathrm{T}-4.931 \mathrm{e}-3\right)^{\circ} \mathrm{T}\right)$
(9) $\mathrm{fi}=5 r^{*}, 00344$
[10] $\mathrm{ft}=\mathrm{fa}+\mathrm{fb}+\mathrm{fc}+\mathrm{fd}+\mathrm{fe}+\mathrm{ff}+\mathrm{fg}+\mathrm{fl}$
[11] $\mathrm{PC}=$ folt ${ }^{+2.4}$
[12] $\mathrm{Pa}=\mathrm{fa} / \mathrm{t}^{\prime 2} 2.4$
[13] $\mathrm{Pb}=\mathrm{fb} / \ln ^{\prime} 2.4$
$[14] \mathrm{rts}=\mathrm{p}^{*}(1-\mathrm{phi}) \cdot \exp (-.08539-10925 / \mathrm{T}) \cdot(\mathrm{Pa}-\mathrm{Pb} \cdot \mathrm{Pc} / \mathrm{K} 1)$
[15] $\mathrm{r} 2 \mathrm{~b}=\mathrm{p}^{*}(1-\mathrm{phi})^{*} \exp (13.2392-25000 / \mathrm{T})^{*} \mathrm{~Pa}$
(151) rder 2 Pb
[17] $\mathrm{re}=\mathrm{rab}$
[18] $\left.\mathrm{r}^{3 \mathrm{t}}=\mathrm{p}^{*}(1-\mathrm{ph})^{\prime}\right) \cdot \exp (2961-11000 / \mathrm{T})^{*} \mathrm{~Pa} \mathrm{a}^{*} \mathrm{Pc}$
(19) $\mathrm{ff}=\mathrm{r} 3 \mathrm{t}$
[20] $\mathrm{rg}=\mathrm{r} 3 \mathrm{t}$
[21] $\mathrm{Oa}=\left(\mathrm{rrs}^{*} \mathrm{H} 1 \mathrm{a}+\mathrm{r} 2 \mathrm{~b}^{*} \mathrm{H} 2 \mathrm{a}+\mathrm{r} 3 \mathrm{t}^{*} \mathrm{H} 3 \mathrm{a}\right) \quad$ Note:
$[22] \mathrm{rb}=\mathrm{r} 1 \mathrm{~s}$
[23] $\mathrm{re}=\mathrm{r} 1 \mathrm{~s}-\mathrm{r} 3 \mathrm{t}$
[24] $\mathrm{ra}=-\mathrm{r} 1 \mathrm{~s}-\mathrm{r} 2 \mathrm{~b}-\mathrm{r} 3 \mathrm{t}$
Independent variable
variable name : v
initial value : 0
final value: 10
Precision
Step ske guess. $h=0.000001$
Truncation error tolerance. eps $=0.000001$

General

number of differential equations: 7
number of explicit equations: 24

```
As seen, we require a protile live this:
```


Why? The reaction rates are high at the inlet - so more heat is consumed, hence more needs to be put in. Then as the reaction rates die down, we need to put in less heat.

Is this possible? Yes, if we operate the coolant co-currently with sufficiently small flow rates, this can, theoretically, be achieved.
(b.) $\mathrm{T}_{0}=500 \mathrm{~K}$

Now, the heat exchanger duty is much lower - also the percentage change along the length of the reactor is small.

Why? Because, at this temperature, reaction rates are so small, and practically no reaction occurs.
(25\%) 2)The following elementary reaction was also found to occur in the production of styrene (P8-30).
(4) 2 ethylene + toluene \longrightarrow ethylbenzene + propylene

Plot the exit temperature and exiting molar flow rates of ethylbenzene, styrene, toluene and benzene as a function of entering temperature from 900 K to 1100 K and compare your results with the case from the homework when the fourth reaction did not take place.

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{R} \times 4 \mathrm{~T}}=-30,000 \mathrm{~kJ} / \mathrm{kmole} \text { toluene } \\
& \text { Heat capacity of propylene }=120 \mathrm{~J} / \mathrm{mole} \mathrm{~K} \\
& -\mathrm{r}_{4 \mathrm{~T}}=\rho(1-\phi) \exp \left[10.4-\frac{12000 \mathrm{~K}}{\mathrm{~T}}\right] \mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{4}} \mathrm{P}_{\mathrm{T}} \text { in kmol toluene } / \mathrm{m}^{3} \bullet \mathrm{~s}
\end{aligned}
$$

Just add another reaction. Modify the reaction rates of EB, Toluene, and Ethylene. Modify the $\mathrm{dT} / \mathrm{dV}$ equation and $\mathrm{F}_{\text {total }}$. See program and results below.

POLYMATH 5.0 Results

Problem 2

Calculated values of the DEO variables

ariable	initial value	minimal value	maximal value	final value
v	0	0	10	10
$f b$	0	0	0.0025208	0.0025208
fa	0.00344	$3.142 \mathrm{E}-04$	0.00344	$3.142 \mathrm{E}-04$
fe	0	0	0.002469	0.002469
fd	0	0	1.857E-06	$1.124 \mathrm{E}-06$
fe	0	0	0.0011051	0.0011051
ff	0	-5.002E-04	0	-5.002E-04
fg	0	0	$5.186 \mathrm{E}-05$	$5.186 \mathrm{E}-05$
fh	0	0	$5.52 \mathrm{E}-04$	$5.52 \mathrm{E}-04$
T	1015	970.89363	1015	970.89363
H1a	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$	$1.18 \mathrm{E}+05$
H2a	$1.052 \mathrm{E}+05$	$1.052 \mathrm{E}+05$	$1.052 \mathrm{E}+05$	$1.052 \mathrm{E}+05$
H3a	$-5.39 \mathrm{E}+04$	$-5.39 \mathrm{E}+04$	$-5.39 \mathrm{E}+04$	$-5.39 \mathrm{E}+04$
H4t	-3.0E+04	$-3.0 \mathrm{E}+04$	$-3.0 \mathrm{E}+04$	$-3.0 \mathrm{E}+04$
p	2137	2137	2137	2137
phi	0.4	0.4	0.4	0.4
K1	2.4427051	1.245584	2.4427051	1.245584
sr	58	58	58	58
fi	0.19952	0.19952	0.19952	0.19952
ft	0.20296	0.20296	0.206034	0.206034
Pa	0.040678	0.0036597	0.040678	0.0036597
Pb	0	0	0.029364	0.029364
Pc	0	0	0.0287599	0.0287599
Pd	0	0	$2.194 \mathrm{E}-05$	$1.31 \mathrm{E}-05$
r1s	0.0010132	$4.554 \mathrm{E}-05$	0.0010132	$4.554 \mathrm{E}-05$
r2b	$5.89 \mathrm{E}-04$	$1.731 \mathrm{E}-05$	$5.89 \mathrm{E}-04$	$1.731 \mathrm{E}-05$
r3t	0	0	8.427E-06	$2.179 \mathrm{E}-06$
r4t	0	0	2.32E-04	8.66E-06
rd	$5.89 \mathrm{E}-04$	-3.661E-07	$5.89 \mathrm{E}-04$	$-1.164 \mathrm{E}-08$
re	$5.89 \mathrm{E}-04$	$1.731 \mathrm{E}-05$	$5.89 \mathrm{E}-04$	$1.731 \mathrm{E}-05$
rf	0	-2.282E-04	0	-6.481E-06
rg	0	0	$8.427 \mathrm{E}-06$	$2.179 \mathrm{E}-06$
rb	0.0010132	$4.554 \mathrm{E}-05$	0.0010132	$4.554 \mathrm{E}-05$
re	0.0010132	4.336E-05	0.0010132	$4.336 \mathrm{E}-05$
ra	-0.0016022	-0.0016022	-5.637E-05	-5.637E-05
rh	0	0	$2.32 \mathrm{E}-04$	$8.66 \mathrm{E}-06$

ODE Report (RKF45)

Differential equations as entered by the user

```
(1) \(d(b) / d(v)=r b\)
(2) \(d(t a) / d(v)=r a\)
[3] \(d(f c) / d(v)=r\)
[4) \(\mathrm{d}(\mathrm{dd}) / \mathrm{d}(\mathrm{v})=\mathrm{rd}\)
(5) \(d(f e) / d(v)=r e\)
[6] \(d(H) / d(v)=\pi\)
[7] \(\mathrm{d}(\mathrm{fg}) / \mathrm{d}(\mathrm{v})=\mathrm{rg}\)
18) \(\mathrm{d}(\mathrm{fh}) / \mathrm{d}(\mathrm{v})=\mathrm{r}\) 斤
[9] \(d(T) / d(v)=\) -
```



```
Explicit equations as entered by the user
[1] \(\mathrm{H} 1 \mathrm{a}=118000\)
(2) \(\mathrm{H} 2 \mathrm{a}=105200\)
(3) \(\mathrm{H} 3 \mathrm{a}=-53900\)
(4) \(\mathrm{H} 4 \mathrm{t}=-30000\)
(5) \(\mathrm{p}=2137\)
(6) \(\mathrm{phi}=.4\)
[7] \(\mathrm{K} 1=\exp \left(-17.34-1.302 \mathrm{e} 4 / \mathrm{T}+5.051^{\circ} \ln (\mathrm{T})+\left(\left(-2.314 e \cdot 10^{\circ} \mathrm{T}+1.302 \theta-6\right)^{*} \mathrm{~T}-4.931 e-3\right)^{\circ} \mathrm{T}\right)\)
\([8] \mathrm{sr}=58\)
[9] \(\mathrm{fi}=3 r^{*}, 00344\)
[10] \(\mathrm{ft}=\mathrm{fa}+\mathrm{fb}+\mathrm{fc}+\mathrm{fd}+\mathrm{fe}+\mathrm{ff}+\mathrm{fg}+\mathrm{fh}+\mathrm{fi}\)
[11] \(\mathrm{Pa}=\mathrm{fa} / \mathrm{t}^{+2} 2.4\)
(12) \(\mathrm{Pb}=\mathrm{fb} / \mathrm{tl}^{+2.4}\)
(13) \(\mathrm{Pc}=\mathrm{fc} / \mathrm{tt}^{+2.4}\)
(14) \(\mathrm{Pd}=\mathrm{fd} / \mathrm{H}^{\prime} 2.4\)
[15] \(\mathrm{r} 1 \mathrm{~s}=\mathrm{p}^{*}(1-\mathrm{phi}){ }^{*} \exp (-.08539-10925 / \mathrm{T})^{*}\left(\mathrm{~Pa}-\mathrm{Pb}{ }^{*} \mathrm{Po} / \mathrm{K} 1\right)\)
[16] \(\mathrm{r} 2 \mathrm{~b}=\mathrm{p}^{*}(1-\mathrm{phi}){ }^{*} \exp (13.2392-25000 \mathrm{~T})^{*} \mathrm{~Pa}\)
[17] \(\mathrm{r} 3 \mathrm{t}=\mathrm{p}^{*}\left(1-\right.\) phi) \({ }^{*} \exp (.2961-11000 / \mathrm{T}){ }^{*} \mathrm{~Pa}{ }^{*} \mathrm{Pc}\)
[18] \(\left.\mathrm{r} 4 \mathrm{t}=\mathrm{p}^{*}(1-\mathrm{ph})\right)^{*} \exp (10.4-12000 / \mathrm{T})^{*} \mathrm{Pd} \mathrm{d}^{*} \mathrm{~Pa}\)
[19] \(\mathrm{rd}=\mathrm{r} 2 \mathrm{~b}-\mathbf{2}^{\mathrm{r}} \mathrm{r} 4 \mathrm{t}\)
[20] \(\mathrm{re}=\mathrm{r} 2 \mathrm{~b}\)
```

[21] $\mathrm{ff}=\mathrm{r} 3 \mathrm{t}-\mathrm{r} 4 \mathrm{t}$
[22] $\mathrm{rg}=\mathrm{r} 3 \mathrm{t}$
[23] $\mathrm{rb}=\mathrm{r} 1 \mathrm{~s}$
[24) $\mathrm{rc}=\mathrm{mf}$ - r 3 t
[25] $r a=-r i s-r 2 b-r 3 t+r 4 t$
[26] $\mathrm{th}=\mathrm{r} 4 \mathrm{t}$
Independent variable
variable name : v
initial value : 0
final value : 10

Here, folymath CAN
cuuse problems of
"ton many veriables".
Independent variable
initial value : 0
final value : 10
Precision
Step size guess. $\mathrm{h}=0.000001$
Truncation error tolerance. eps $=0.000001$
General
number of differential equations: 9
number of explicit equations: 26

Just hove to be cureal to put in numerical velues of coritants, instend of defining it by some variable name.

$$
2 \mathrm{~A} \longrightarrow \mathrm{~B}
$$

a) Determine the conversion achieved in a $5 \mathrm{dm}^{3}$ PFR for an entering temperature of 675 K . Plot the temperature and conversion down the length (volume) of the reactor.
b) Vary the entering temperature and plot the conversion as a function of entering temperature.

All other conditions of P8-9 remain the same.

$$
2 \mathrm{~A} \rightarrow \mathrm{~B}
$$

It is a gas phase reaction, but no points were deducted if assumed liquid phase All further calculations assume gas phase
Mole Balance: $\frac{d X}{d V}=\frac{-r_{A}}{F_{\mathrm{Ao}}}$
Rate Law: $-\mathrm{r}_{\mathrm{A}}=-k C_{A}^{2}$
Stoichiometry: $\mathrm{C}_{\mathrm{A}}=\frac{\mathrm{C}_{\mathrm{Ao}}(1-\mathrm{X})}{(1+\varepsilon X)}$
where $=y_{\text {A }_{0}} \delta=1 *(0.5-1)=-0.5$
Energy Equation: $\frac{\mathrm{dT}}{\mathrm{dV}}=\frac{\mathrm{Ua}\left(\mathrm{T}_{\mathrm{a}}-\mathrm{T}\right)+\left(-\mathrm{r}_{\mathrm{A}}\right)\left(-\Delta \mathrm{H}_{\mathrm{rx}}\right)}{\sum \mathrm{F}_{\mathrm{i}} \mathrm{C}_{P i}}$
$\mathrm{C}_{\mathrm{PA}}=0.12222 \mathrm{~kJ} / \mathrm{mol} \mathrm{K}$
$\Delta \mathrm{H}_{\mathrm{rx}}=-231-0.012(\mathrm{~T}-298)$
$\Delta \mathrm{C}_{\mathrm{P}}=-0.012$
$\mathrm{C}_{\mathrm{PB}}=\mathrm{C}_{\mathrm{PA}}+\Delta \mathrm{C}_{\mathrm{P}}$
Note: $\Delta \mathrm{C}_{\mathrm{P}}$ is an order of magnitude lower than C_{PA}
Therefore, $\mathrm{C}_{\mathrm{PA}} \cong \mathrm{C}_{\mathrm{PB}}$
Hence, $\sum \mathrm{F}_{\mathrm{i}} \mathrm{C}_{P i}=\mathrm{F}_{\mathrm{A}} \mathrm{C}_{\mathrm{PA}}+\mathrm{F}_{\mathrm{B}} \mathrm{C}_{\mathrm{PB}} \cong \mathrm{F}_{\mathrm{Ao}} \mathrm{C}_{\mathrm{PA}}$ (as used in the code below)
$\operatorname{Or} \sum \mathrm{F}_{\mathrm{i}} \mathrm{C}_{P i}=\mathrm{F}_{\mathrm{Ao}}\left(\sum \Theta_{\mathrm{i}} \mathrm{C}_{P i}+\Delta \mathrm{C}_{\mathrm{P}} \mathrm{X}\right)=\mathrm{F}_{\mathrm{Ao}}\left(\mathrm{F}_{\mathrm{Ao}} \mathrm{C}_{P i}+\Delta \mathrm{C}_{\mathrm{P}} \mathrm{X}\right)$

POLYMATH 5,0 Results

Prob 3: Version 2 04-12-2000

Calculated values of the DEO variables

Variable	initial value	minimal value	maximal value	final value
v	0	0	5	5
\times	0	0	0.2394186	0.2394186
T	675	675	713.63314	709.32955
cao	1	1	1	1
To	675	675	675	675
Ua	5	5	5	5
k	0.0734336	0.0734336	0.3402318	0.2893287
dH	-235.524	-235.98743	-235.524	-235.93595
Ta	700	700	700	700
fao	5	5	5	5
сра	0.1222	0.1222	0.1222	0.1222
ca	1	0.8221959	1	0.8221959
ra	-0.0734336	-0.2905362	-0.0734336	-0.1955879

ODE Report (RKF45)

Differential equations as entered by the user
[1] $d(x) / d(v)=-r a / a o$
(2) $\mathrm{d}(\mathrm{T}) / \mathrm{d}(\mathrm{v})=\left(\mathrm{Ua}{ }^{*}(\mathrm{Ta}-\mathrm{T})+(-\mathrm{ra})^{*}(-\mathrm{dH})\right\rangle /\left(\mathrm{fao}{ }^{\circ} \mathrm{cpa}\right)$

Explicit equations as entered by the user
(2) cao = 1
(2) $\mathrm{T}_{0}=675$
(3) $\mathrm{Ua}=5$
(4) $\mathrm{k}=1.48 \mathrm{e} 11^{\circ} \exp (-19124 / \mathrm{T})$
[5] $\mathrm{dH}=-231-.012^{*}(\mathrm{~T}-298)$
(6) $\mathrm{Ta}=700$
(7) $\mathrm{fao}=5$
[8] сра $=, 1222$
[9] $\mathrm{ca}=\mathrm{cao}^{*}(1-\mathrm{x}) /\left(1-0.5^{\circ} \mathrm{x}\right)^{\prime}(\mathrm{To} / \mathrm{T})$
[10] $\mathrm{ra}=-\mathrm{k}^{\prime} \mathrm{ca}^{\wedge}{ }^{2} 2$
Independent variable
variable name : v
initial value : 0
final value : 5
Precision
Step size guess. $\mathrm{h}=0.000001$
Truncation error tolerance. eps $=0.000001$

General

number of differential equations: 2
number of explicit equations: 10
Elapsed time: 1.1574 sec
Data file: C:WINNTMProfiles)AdministratoriDesktopiChE 344)Exam2VE2P3n.pol

\[

\]

344/W'00 ExamII Computer Portion

