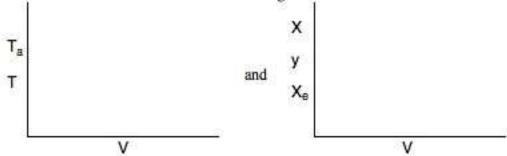
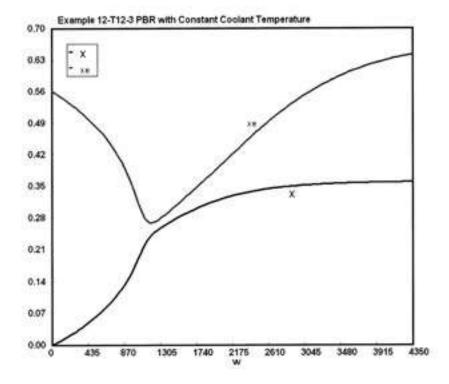
ChE 344 Week 12 Problem Set 18

Due Tuesday, March 26, 2013 (Lecture 19)


Individual Assignment

1. PLQ 19 - What are Kappa, T_C and C_{Po}? Why are there three pathways (branches) in Figure 12-3 on page 549?


Group Assignment

Continuation of Class problem from March xx, 2013

1. Return to In Class Problem 14 on Tuesday, March 15, 2013 and also P12-3_B. If you did not complete the ICP, run the base case for each of the heat exchange conditions.

For each case (adiabatic, constant T_a , co-current variable T_a) and counter current variable T_a) Explain why each of the curves look the way they do. Explain the minimums, maximums or changes in slopes. E.g., why does the X_e reach a minimum in the figure below?

Note if you did not finish the In Class Problem, the solution to Tuesday's (3/xx/13) is now on CTools.

2. Fill in the following table of exit and maximum conditions. Explain any differences between the curves.

Type of Heat Exchange	X	X _e	у	Ta	T	T _{max}
Adiabatic						
Constant T _a						
Co-Current						
Counter Current						

Individual Assignment

1. $P12-3_B$ - omit parts (h) and (i).

P584-585 Typos Problem P12-3_B <u>Base Case</u> Θ_B =1 T_{ao} =320 K \dot{m}_c =1000 mol/s K_C =100 @ 303 K (f) Change to mol/s $1.0 \le \dot{m}_c \le 1,000$ mol/s

Load the LEP. Develop a personal relationship with this reactor and reaction. Find out all you can about it by carrying out the parameter variation. **Save paper!** Only print out the graph for the base case and show(sketch) trends relative to the base on the base case graph for each of Parts (a) through (g).

- (a) Plot X, y, X_e at the exit versus FA0 and explain any maximum or minimum values.
- (b) Plot X, y, X_e at the exit versus ΘI and explain any maximum or minimum values.
- (c) Plot X, y, X_e at the exit versus T0 and explain any maximum or minimum values.
- (d) Plot X, y, X_e at the exit versus Ta and explain any maximum or minimum values.
- (e) Plot X, y, X_e at the exit versus for $1.0 \le \dot{m}_c \le 10,000$ mol/s and explain any maximum or minimum values.
- (f) Plot X, y, X_e at the exit versus and note any maximum or minimum values. Write down and describe all the trends you found of the things that affect your reactor.
- 2. P12-7_B
- 3. P12-21_B