Raman Spectroscopy Theory and Aplications

Dr. Florian Paulat (Lehnert Laboratory)

Paulat, F.; Praneeth, V. K. K.; Lehnert, N. Inorg. Chem. 2006, 45, 2835-2856

Historical background

• 1920s: Prediction of inelastic scattering of light by molecules (Kramers, Heisenberg and Dirac) • 1928: First report of inelastic scattering in water and alcohol vapors by Raman & Krishnan Technical limitation: light source 1960s: Development of Laser as intense monochromatic light sources

Outline

Assembly of a Raman spectrometer

- 1) Theoretical background of:
- Nonresonance Raman spectroscopy
- Resonance Raman (rR) spectroscopy → A-,B- and C-Term enhancement mechanism
- 2) Resonance Raman spectroscopy of metalloporphyrins
- Electronic structure of metalloporphyrins
- Assignment of vibrational modes using DFT and rR spectroscopy
- Identification of electronic transitions using rR spectroscopy

- ~ 0.1 % is elastically (Rayleigh) and ~ 0.0001-0.00001 % inelastically scattered (Raman: Stokes; Anti-Stokes) \rightarrow LASER!
- IR: one photon \rightarrow direct absorption of light in IR region
- Raman: two photons \rightarrow UV, Vis and NIR excitation
- Stokes more intense than anti-Stokes (Boltzmann distribution)

Resonance Raman (rR) theory

- Harmonic potentials
- Intensity of a Raman line is proportional to α^2
- Polarizability: $\alpha = A + B + C$
- \rightarrow What is the meaning of the different mechanisms?
- → Following: Vibronic treatment of Albrecht: Starting from the quantum theoretical dispersion equation, using the Herzberg-Teller formalism he derived equations for
- A-, B- and C-Term enhancement.

(a) Tang, Albrech in *Raman Spectroscopy*, Vol. 2, Plenum Press, New York, **1970**.(b) Albrecht, *J. Chem. Phys.* **1961**, *34*, 1476.

rR – Enhancement Mechanism (A-Term)

$$A = \sum_{\upsilon} \frac{\langle e | \mu | g \rangle^2 \cdot \langle m | \upsilon \rangle \cdot \langle \upsilon | n \rangle}{E_{e,\upsilon} - E_{g,m} - E_0 + i\Gamma}$$

• In resonance:
$$E_{e,v} - E_{g,m} \approx E_0$$

- A proport. to electronic transition moment squared → intense
 electronic transition (dipole allowed)
- Vibrational overlap integrals (Franck-Condon factor):
- a) = 0 for identical potential curves and

b) \neq 0 only if displacement of potential curves ($\Delta Q > 0$) \rightarrow only totally symmetric modes (A_{1g}) Albrecht, 1961

rR – Enhancement Mechanism (B-Term)

$$B = \sum_{\upsilon} \left[D_{\upsilon} \cdot \sum_{s} \sum_{j} \frac{\langle e|h_{j}|s \rangle}{\Delta E_{e,s}} \cdot \left(\frac{\langle e|\mu|g \rangle \cdot \langle s|\mu|g \rangle \cdot \langle n|\upsilon \rangle \cdot \langle \upsilon|Q_{j}|m \rangle}{+ \langle e|\mu|g \rangle \cdot \langle s|\mu|g \rangle \cdot \langle m|\upsilon \rangle \cdot \langle \upsilon|Q_{j}|n \rangle} \right) \right]$$

- Vibronic coupling of another excited state |s> with the resonant excited state |e>
- Energetic separation of |e> and |s> must be small
- Both transition dipole moments from |g> to |e> and |s> must be nonvanishing

\rightarrow excited states must belong to allowed electronic transitions

- $<_{V}|Q_{j}|m,n>$ connect |g> and |e> vibrational levels that differ by one quantum; when they are multiplied by Franck-Condon factors having same quantum numbers, the nominator does not! vanish even if there is no excited-state displacement ΔQ
- \rightarrow (totally) and nontotally symmetric modes are enhanced via B-Term
- Which modes are enhanced? \rightarrow group theory (direct product)

Albrecht, 1961

rR – Enhancement Mechanism (C-Term)

$$C \propto \langle m | Q | v \rangle \cdot \langle v | Q | n \rangle$$

• Numerator contains two Q-dependent integrals, which connect vibrational levels of |g> and |e> differing by one quantum

What kind of modes are enhanced by C-Term?

 \rightarrow Overtones (0 \rightarrow 2)!!!

Albrecht, 1961

2) Resonance Raman Spectroscopy of [Fe(TPP)CI]

Optimized structure (B3LYP/LanL2DZ)

Vibrational Assignment:

• 78 Atoms → 3N-6 = 228

vibrations!!!

- What tools to solve problem?
- DFT calculations
- Polarized rR spectroscopy (D_{4h} apply to the [M(TPP)] vibrations of [M(TPP)(CI)])

Nonresonance Raman Spectrum of [Fe(TPP)CI] ($\lambda_{exc.} = 1064$ nm)

Depolarization ratio ρ

- $0 < \rho < \frac{3}{4}$ polarized (**p**; A_{1g} vibrations)
- $\rho = \frac{3}{4}$ depolarized (**dp**; B_{1g} and B_{2g} vibrations)
- $\rho > \frac{3}{4}$ anomalous Polarization (**ap**; A_{2g} vibrations; in nonresonance Raman forbidden!)

Polarized nonresonance Raman Spectrum of [Fe(TPP)CI] ($\lambda_{exc.}$ = 1064 nm)

Electronic structure of [Fe(TPP)CI]: Gouterman model

Electronic structure of [Fe(TPP)CI]: Gouterman model

Electronic structure of [Fe(TPP)CI]: Gouterman model

- Q_v : Vibronic mixing between Soret and Q excited states: Which vibrations are active? $\rightarrow E_u \times E_u = (A_{1g}) + B_{1g} + B_{2g} + A_{2g}$
- Distance between Q and Q_v?

Polarized rR spectroscopy of Metalloporphyrins

- A-Term: totally symmetric modes $\rightarrow A_{1q}$ vibrations
- A-Term proport. to $\langle e|\mu|g\rangle^2 \rightarrow$ A-Term is dominant for intense electronic transitions

Metalloporphyrin: \rightarrow In Soret resonance enhancement of A_{1a}

• B-Term: vibronic coupling \rightarrow nontotally symmetric modes which are active in mixing $|e\rangle$ with $|s\rangle \rightarrow B_{1q}$, B_{2q} and A_{2q}

Metalloporphyrin: \rightarrow In Q resonance (vibronic mixing with Soret excited state) enhancement of B_{1g}, B_{2g} and A_{2g} modes

But: Q band is relative intense \rightarrow additional A-Term enhancement of A_{1a}

Polarized rR spectrum (Soret) of [Fe(TPP)CI] at $\lambda_{exc.} = 454.5$ nm

Polarized rR spectrum (Q_v) of [Fe(TPP)CI] at $\lambda_{exc.} = 514.5$ nm

Anomalous Polarization

 1934 Placzek: Theoretical Prediction of anomalous polarization

• 1972 Spiro and Strekas:

almost 40 years later: first experimental determination of this effect: found in the resonance Raman spectra (depolarized measurements) of hemoglobin and cytochrome C

T. G. Spiro, T. C. Strekas, Proc. Nat. Acad. Sci. 1972, Vol. 69 (No. 9), 2622-2626.

Polarized rR spectrum (Q) of [Fe(TPP)CI] at $\lambda_{exc.} = 568.2$ nm

[Fe(TPP)CI]: rR spectrum with excitation in ? ($\lambda_{exc.} = 647.1 \text{ nm}$)

 low energy: anomalous polarized bands: out-ofplane vibrations of the phenylrings

 different enhancement compared to excitation in Q

 What is the nature of this electronic transition?

 TD-DFT calculations and MCD Spectra have to be analyzed in detail!

Gouterman: porphyrin(a_{1u}/a_{2u}) $\rightarrow d\pi$ transition (again E_u symmetry \rightarrow strong CI with Soret and or Q (if near in energy)? TDDFT: very very complicated!!!)

Summary (rR of Metalloporphyrins)

- Complete assignment of the nonresonance and resonance Raman spectra of [Fe(TPP)CI] using DFT and polarized Raman
- Assignment of additional vibrations which are not present in the nonresonance case
- Resonance enhancement is related to the nature of the excited electronic transition → Polarized resonance Raman assists in assigning electronic absorption bands
- Identification of anomalous polarized bands (A_{2g}) which are a probe for vibronic mixing
- Resonance enhancement very different for Soret, $Q/Q_{\rm v}$ and ${\sim}680 \text{nm}$ bands
- What is the nature of the ~680nm feature? Gouterman: porphyrin(a_{1u}/a_{2u}) $\rightarrow d\pi$ transition

Paulat, F.; Praneeth, V. K. K.; Lehnert, N. Inorg. Chem. 2006, 45, 2835-2856.

Available wavelengths for rR in the Lehnert group

