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Historical background

• 1920s: Prediction of inelastic
scattering of light by molecules
(Kramers, Heisenberg and Dirac)
• 1928: First report of inelastic
scattering in water and alcohol
vapors by Raman & Krishnan
Technical limitation: light source
• 1960s: Development of Laser 
as intense monochromatic light 
sources



Outline
Assembly of a Raman spectrometer

1) Theoretical background of:

 Nonresonance Raman spectroscopy

 Resonance Raman (rR) spectroscopy  A-,B- and C-Term 
enhancement mechanism

2) Resonance Raman spectroscopy of metalloporphyrins

 Electronic structure of metalloporphyrins

 Assignment of vibrational modes using DFT and  

rR spectroscopy

 Identification of electronic transitions using rR spectroscopy



Raman spectrometer



1) Nonresonance Raman

• ~ 0.1 % is elastically (Rayleigh) and ~ 0.0001-0.00001 % inelastically
scattered (Raman: Stokes; Anti-Stokes)  LASER!
• IR: one photon  direct absorption of light in IR region
• Raman: two photons  UV, Vis and NIR excitation
• Stokes more intense than anti-Stokes (Boltzmann distribution) 



Resonance Raman (rR) theory
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• Harmonic potentials
• Intensity of a Raman line is
proportional to 2

• Polarizability:  = A + B + C 
 What is the meaning of the
different mechanisms?
 Following: Vibronic treatment of 
Albrecht: Starting from the
quantum theoretical dispersion
equation, using the Herzberg-Teller 
formalism he derived equations for
A-, B- and C-Term enhancement.Q

(a) Tang, Albrech in Raman Spectroscopy, Vol. 2, Plenum Press, New York, 1970. 
(b) Albrecht, J. Chem. Phys. 1961, 34, 1476.  



rR – Enhancement Mechanism
(A-Term)

 



 


iEEE
nmge

A
mge 0,,

2

• In resonance: Ee,v – Eg,m ≈ E0

• A proport. to electronic transition moment squared  intense
electronic transition (dipole allowed)  
• Vibrational overlap integrals (Franck-Condon factor):
a) = 0 for identical potential curves and 
b) ≠ 0 only if displacement of potential curves (Q>0)  only totally
symmetric modes (A1g) Albrecht, 1961



rR – Enhancement Mechanism
(B-Term)
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• Vibronic coupling of another excited state |s> with the resonant excited state |e>
• Energetic separation of |e> and |s> must be small
• Both transition dipole moments from |g> to |e> and |s> must be nonvanishing
 excited states must belong to allowed electronic transitions
• <|Qj|m,n> connect |g> and |e> vibrational levels that differ by one quantum; 
when they are multiplied by Franck-Condon factors having same quantum numbers, 
the nominator does not! vanish even if there is no excited-state displacement Q
 (totally) and nontotally symmetric modes are enhanced via B-Term
• Which modes are enhanced?  group theory (direct product)

Albrecht, 1961



rR – Enhancement Mechanism
(C-Term)

nQQmC  
• Numerator contains two Q-dependent integrals, which connect
vibrational levels of |g> and |e> differing by one quantum

What kind of modes are enhanced by
C-Term?

 Overtones (02)!!!

Albrecht, 1961



2) Resonance Raman Spectroscopy
of [Fe(TPP)Cl] 

Optimized structure (B3LYP/LanL2DZ)

Vibrational Assignment: 
• 78 Atoms  3N-6 = 228 
vibrations!!!
• What tools to solve problem?
- DFT calculations
- Polarized rR spectroscopy (D4h

apply to the [M(TPP)] vibrations of
[M(TPP)(Cl)])



Nonresonance Raman Spectrum
of [Fe(TPP)Cl] (exc. = 1064 nm)
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Depolarization ratio 
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 0 <  < ¾ polarized (p; A1g

vibrations)

  = ¾ depolarized (dp; B1g

and B2g vibrations)

 > ¾ anomalous Polarization (ap; A2g vibrations; in nonresonance
Raman forbidden!)



Polarized nonresonance Raman Spectrum of 
[Fe(TPP)Cl] (exc. = 1064 nm)
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Electronic structure of 
[Fe(TPP)Cl]: Gouterman model
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Electronic structure of 
[Fe(TPP)Cl]: Gouterman model

Qv

Q

A1u< 79>
HOMO

A2u< 81>

Eg< 82/83>LUMO



Electronic structure of 
[Fe(TPP)Cl]: Gouterman model
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 Both excited states have Eu

symmetry (a1u x eg = a2u x eg = Eu)
 Strong CI leads to large splitting
 Soret and Q-band

 Qv: Vibronic mixing between Soret and Q excited states: Which
vibrations are active?  Eu x Eu = (A1g) + B1g + B2g + A2g

 Distance between Q and Qv?

Soret

Qv

Q



Polarized rR spectroscopy of 
Metalloporphyrins 

 A-Term: totally symmetric modes  A1g vibrations

A-Term proport. to <e||g>2  A-Term is dominant for intense
electronic transitions

 B-Term: vibronic coupling  nontotally symmetric modes which
are active in mixing |e> with |s>  B1g, B2g and A2g

Metalloporphyrin: In Soret resonance enhancement of A1g

Metalloporphyrin:  In Q resonance (vibronic mixing with Soret
excited state) enhancement of B1g, B2g and A2g modes

But: Q band is relative intense additional A-Term enhancement of A1g



Polarized rR spectrum (Soret) of 
[Fe(TPP)Cl] at exc. = 454.5 nm 

500 1000 1500 2000
0

4000

8000

12000

16000

20000

In
te

ns
ity

Wavenumbers (cm-1)

500 1000 1500 2000
0

4000

8000

12000

16000

20000

 

p

25
9

p

88
7

p

72
3

p

63
9

p

57
2

p

15
52

p

15
98

p

10
06

p
10

73
p

12
35

p

14
52

p

13
64

p

39
1  

only A1g vibrations



rR: excitation profile [Fe(TPP)Cl]
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Polarized rR spectrum (Qv) of 
[Fe(TPP)Cl] at exc. = 514.5 nm
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Anomalous Polarization

 1934 Placzek: Theoretical Prediction of 
anomalous polarization

 1972 Spiro and Strekas:
almost 40 years later: first
experimental determination of   
this effect: found in the resonance
Raman spectra (depolarized
measurements) of hemoglobin and cytochrome C

T. G. Spiro, T. C. Strekas, Proc. Nat. Acad. Sci. 1972, Vol. 69 (No. 9), 2622-2626.



Polarized rR spectrum (Q) of 
[Fe(TPP)Cl] at exc. = 568.2 nm
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[Fe(TPP)Cl]: rR spectrum with excitation
in ? exc. = 647.1 nm

 low energy: anomalous
polarized bands: out-of-
plane vibrations of the
phenylrings
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 different enhancement
compared to excitation
in Q
 What is the nature of 
this electronic
transition?

 TD-DFT calculations
and MCD Spectra have
to be analyzed in detail!

Gouterman: porphyrin(a1u/a2u)  d transition (again Eu symmetry  strong CI with
Soret and or Q (if near in energy)? TDDFT: very very complicated!!!)



Summary (rR of 
Metalloporphyrins)

 Complete assignment of the nonresonance and resonance Raman 
spectra of [Fe(TPP)Cl] using DFT and polarized Raman

 Assignment of additional vibrations which are not present in the
nonresonance case

 Resonance enhancement is related to the nature of the excited electronic 
transition  Polarized resonance Raman assists in assigning 
electronic absorption bands

 Identification of anomalous polarized bands (A2g) which are a probe for
vibronic mixing

 Resonance enhancement very different for Soret, Q/Qv and ~680nm 
bands

 What is the nature of the ~680nm feature? Gouterman: 
porphyrin(a1u/a2u)  d transition

Paulat, F.; Praneeth, V. K. K.; Lehnert, N. Inorg. Chem. 2006, 45, 2835-2856.



Available wavelengths for rR in 
the Lehnert group
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