Atom Trap, Krypton-81, and Saharan Water

- ⁸¹Kr dating
- Earlier Methods
- Atom Trap Trace Analysis (ATTA)

Western Desert, Egypt

• Nubian Aquifer, Egypt

Supported by DOE, Office of Nuclear Physics NSF, Division of Earth Sciences

Arnold & Libby, Science (1949)

Radio-Krypton Dating

• Polar Ice as a natural archive

temperature precipitation gas composition volcanic eruption solar variability...

• Number of ⁸¹Kr atoms in 1 liter of :

Air $\rightarrow 20,000$ Water $\rightarrow 1,000$ Ice $\rightarrow 1,000$

Low-Level Decay Counting (LLC)

⁸¹Kr (230 kyr) activity: 0.1 dpm/l Kr ⁸⁵Kr (10.7 yr) activity: 3×10^4 dpm/l Kr

 $Efficiency = \frac{Count \ Time}{Lifetime} = \frac{100 \ hr}{330 \ kyr} = 3 \times 10^{-8}$

⁸⁵Kr in the Atmosphere ($t_{1/2} = 11$ yr, I.A.= 1×10⁻¹¹)

- Nuclear non-proliferation Monitor fuel re-processing activities;
- Nuclear safety Monitor leaks from nuclear fuel containers.

Von Hippel, Albright, Levi Sci. Am. (Sept., 1985)

Accelerator Mass Spectrometry (AMS)

Science (1977): R.A. Muller / Nelson et al. / Bennett et al.

Charge and mass measurements

- Particle identification based on energy loss
- Stripping eliminates molecular isobars
- Negative ion tricks eliminates atomic isobars

Advantages of atom counting:

- Fast, Sensitive; AMS / LLC = 10^5 (¹⁴C)
- Not bothered by decay background

Accelerator Mass Spectrometry of Kr-81

Kutschera et al., NIM B (1994); Collon et al., NIM B (1997)

Full stripping at high energy (~ 4 GeV) for isobar separation: ⁸¹Kr³⁶⁺ vs. ⁸¹Br³⁵⁺.

First ⁸¹Kr-Dating of Old Groundwater

P. Collon et al., Earth Planet Sci. Lett. 182, 103 (2000)

AMS Counting Efficiency ~ 3×10^{-5}

The Great Artesian Basin

Watson Creek	$(4.02 \pm 0.51) \times 10^5$	yr
Oodnadatta	$(3.54 \pm 0.50) \times 10^5$	yr
Duck Hole	$(2.87 \pm 0.38) \times 10^5$	yr
Raspberry Creek	$(2.25 \pm 0.42) \times 10^5$	yr

Great Artesian Basin Intake Area Concentration of Springs Direction of Flow Structural Ridges

Laser Methods Based on Isotope Shifts

Photon Burst Spectroscopy

Greenlees et al., Opt. Commun. (1977); Balykin et al., JETP Lett. (1977)

Magneto-Optical Trap (MOT)

MOT Advantages

- Long observation time -- 100 ms;
- High capture rate -- 10^9 - 10^{12} s⁻¹;
- Narrow linewidth -- Doppler broadening negligible;
- Spatial confinement -- trap size < 1 mm;
- Storage -- separation of loading and detection.

Krypton Atom Level Diagram

Single Atom Detection

Counting ⁸¹Kr and ⁸⁵Kr

Calibration: ATTA vs. Low-Level Counting

Du *et al.*, Geophys. Res. Lett. (2003) ATTA at Argonne, LLC at Bern

Atom Trap Trace Analysis (ATTA)

ATTA-1: Chen et al., Science (1999) ATTA-2: Du et al., Geophys. Res. Lett. (2003)

Present Status of ATTA-2:

- Selectivity requirement: Done;
- Efficiency requirements: Practical, but far from perfection.

First Applications: Nubian Aquifer, Egypt

Argonne National Laboratory: Z.-T. Lu, M. SultanAin Shams University: A. El Bedawy, Y. Dawood,University of Bern: R. Purtschert, R. LorenzoB. El Kaliouby, A. MohammedUniversity of Illinois: N. SturchioEgyptian Geological Survey: Z. El Alfy, Radwan

One Million Years of Nubian Aquifer Groundwater History

Sturchio et al., Geophys. Res. Lett. (2004)

- Groundwater at six sites dated;
- Flow direction and speed measured;
- Source determined.

⁸¹Kr Dating: From Dream to Practice

Polar Ice Groundwater Water or Ice Sample Size (L) 10^{7} 10^{6} 10^{5} 10^{4} 10^{3} 10^{2} 10 1 Efficiency 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 LLC ATTA-I **AMS** ATTA-II ATTA-III ATTA-IV 1969 1999 1997 2003 2008?? $5p[3/2]_2$ **Kr-ATTA version 4.0 819 nm** 215 nm Optical production of Kr* $5s[3/2]^{0}_{1}$ 124 nm + 819 nm $5s[3/2]^0$ Young *et al.*, *J. Phys. B* (2002) Metastable 215 nm 124 nm 215 nm + 215 nmWendt et al. 4p⁶ Ground

Argonne Atom Trapper

Yun Ding Kevin Bailey Zheng-Tian Lu Peter Mueller Tom O'Connor

ATTA Collaborators

Neil Sturchio– Univ Illinois ChicagoAndrew Davis– Univ of ChicagoShuiming Hu– USTC, ChinaRoland Purtschert– Univ of BernLinda Young & Bob Dunford - Argonne

