1

Optical Semiconductor Dots for Quantum Information I

- Theory here. Phys fr experimental view Prof Steel
- Qubit: a spin in a semiconductor quantum dot
- Preparation of a quantum state: optical initialization
- Quantum operations by optical control
 - universal if arbitrary one qubit rotations plus an entangling two-qubit operation
- Scaling up to a useful system, eg quantum computer
- Dissipative effects (tomorrow afternoon session)
 - Spin relaxation and decoherence

L. J. Sham University of California San Diego

L J Sham 6/11/08

Supported by ARO/NSA-LPS, DARPA/AFOSR, NSF

Collaborators in Quantum Computer

UCSD Theory Pochung Chen Carlo Piermarocchi **Yseulte Dale** Sophia Economou Wang Yao Renbao Liu Michael Leuenberger **Clive Granger** Semion Saikin Parin Dalal

L J Sham 6/11/08

Univ of Michigan Quantum Optics Duncan Steel Gang Chen Todd Stievater Xiaoqin Li Gurudev Dutt Jun Cheng Yanwen Wu Xiaodong Xu Bo Sun Qiong Huang

Naval Res Lab Fabrication & Characterization Dan Gammon D.S. Katzer D. Park J.G. Tischler A.S. Bracker M.E. Ware E.A. Stinaff M.F. Doty M. Schreibner

Three Kinds of Semiconductor Quantum Dots

Experimentalists' view of Quantum Dots

Self-assembled quantum dot

Interface fluctuation quantum dot

D.Gammon, *et al.*, PRL **76,** 3005 (1996). Gated quantum dot

Elzerman et al. Nature **430**, 431 (2004)

A. Zrenner, et al. J.Chem.Phys. **112**, 7790 (2000).

L J Sham 6/11/08

A real system: electron spin in a quantum dot

AlGaAs

Quantum Dot: height ~ 2-4 nm width ~ 10-30 nm

NRL group: D. Gammon, A. S. Bracker, M. F. Doty, M. Scheibner, E. A. Stinaff, J. G. Tischler, M. E. Ware

L J Sham 6/11/08

Optical spectrum provides

n⁺-GaAs

GaAs QDs

excellent measure of charge state

Theorists' view of quantum dots

Square-well quantum dots

Lateral harmonic well quantum dots

L J Sham 6/11/08

Is an electron in a dot isolated?

N+1 electron problem

- lattice symmetry ==> band gap
- e-e interaction ==>
 - renormalized mass
 - dielectric screening of interaction
 - e in filled valence band inert
 - life time infinite w/o excitations across the gap
- e-phonon interaction ==> finite life time, prolonged at low T
- Exciton (e-h) is an exact excited state w/o radiative interaction.
- Confinement of an electron in a quantum dot
- Residual decoh op gen phonons & local electron polarizations

Kohn PR (1960), Sham, PR (1966), Sham and Rice, PR (1966).

Single spin state preparation by optical pumping

Multi-particle states

A. Kastler (1952)

- Expt of SAQD InAs in GaAs
- Resonant laser excitation for a time (~300 ms) >> $1/\gamma$ (1 µs) but less than T₁ due to tunneling
- Fidelity 0.998 at 0.3T (or spin T~20 mK for Zeeman~4K) at op temp of 4K, B~62T, it would takes forever at spin flip rate 1/T₁ to equilibrate

Atatüre, Dreiser, Badolato, Högele, Karrai, Imamoğlu, Science 2006

- Population of |x-> states as a function of time.
- The blue dash cures and the solid lines are the analytical and numerical results, respectively
- Near-unity fidelity is approached around 10 ns.
- The Rabi frequency is taken to be equal to the trion decay rate.

Theory: Emary, Xudong Xu, Steel, Saikin, Sham, PRL 2007

Experiment (in Steel's lectures): Xu, Wu, Sun, Huang, Cheng,

L J Sham 6/11/08 Steel, Bracker, Gammon, and Emary, Sham, PRL 2007

Quantum Operation on a Single Qubit

Not q-op

Optical Excitation by Fermi golden rule

Excitation EM field with incoherent bandwidth

A coherent b pulse of the duration may rotation the spin in an angle α about a

fixed axis in the rotating frame

$$\mathsf{R}(\alpha,\mathbf{n}) = \begin{bmatrix} \cos(\frac{\alpha}{2}) - in_z \sin(\frac{\alpha}{2}) & -i(n_x - in_y) \sin(\frac{\alpha}{2}) \\ -i(n_x + in_y) \sin(\frac{\alpha}{2}) & \cos(\frac{\alpha}{2}) + in_z \sin(\frac{\alpha}{2}) \end{bmatrix}$$

Arbitrary rotation of the spin state -- single qubit gate

L J Sham 6/11/08

11

Pochung Chen, C. Piermarocchi, L.J. Sham, D. Gammon, and D.G. Steel, PRB 69, 075320 (2004)

Single Electron Spin Coherence: Raman Quantum Beats

Rabi rotation

Control of single spin with single optical pulse

S. Economou, L. J. Sham, Yanwen Wu, and D. G. Steel, PRB 2006

Spin Coherence Modulated Trion Excitation (taking background into account)

Theory

Controlling spin interaction between two electrons in two dots

Theory

Optical control of two dot-spins via 2 trions

Spin and trion states

Two trions have Coulomb interaction

Resource estimate

TABLE I: Gates, pulses, and time-consumption required for factoring 15 with Shor's quantum algorithm

	$\#$ of one-bit gates a	# of swap gates	# of phase gates	# of pulses [▶]	${\rm time}\text{-}{\rm consumption}^{c}$
a=4	4	1	3	48	0.8 ns
a=13 (Toffoli gate)	19	8	15	159	1.2 ns
a=13 (S- Toffoli gate)	12	6	7	102	1.0 ns

^aAll one-bit gates between two controlled gates are counted as one gate requiring 4 pulses which can be done within 10 ps ^b including 21 pulses for initialization

^cincluding the time for initialization, estimated as 100 ps per bit

Renbao Liu and L. J. Sham, unpublished.

To built a scalable system: Qubit conversion

- CQED and Q-Net pioneered by
 - Cirac, Zoller, Kimble & Mabuchi, PRL 78, 3221 (1997).
- Control deterministic in CQED
 - Adiabatic control: Fleischhaeur, Yelin & Lukin, Opt. Comm 179, 395 (2000)
 - Adiabatic control: Duan, Kuzmich & Kimble, PRA 67, 032305 (2003)
 - Non-adiabatic: Yao, Liu &
 Sham PRL 95, 030504 (2005)

Control processes deterministic

L J Sham 6/11/08

Cavity-dot-wave guide for solid state CQED

Consequences of spin-photon swap

$|+\rangle |vac\rangle \rightarrow |-\rangle |\alpha\rangle$

$$[\beta_{+}|+\rangle + \beta_{-}|-\rangle] |vac\rangle \rightarrow |-\rangle [\beta_{+}|\alpha\rangle + \beta_{-}|vac\rangle]$$

- A stationary qubit & a flying qubit exchanging info.
- Initialization
 - Reduce an unpolarized state to a spin state, $|-\rangle$, say.
 - Basic process: Wave guide serves as entropy dump
- Entanglement of a spin and a photon

$$|+\rangle |vac\rangle \rightarrow [|+\rangle |vac\rangle + |-\rangle |\alpha\rangle]/\sqrt{2}$$

Liu, Yao, Sham, PRB 72, 081306 (R) (2005)

Quantum Non-Demolition (QND) Measurement of n Spins

pump strength (meV)

- Projective measurement
 - If there is no photon output, the spin state is $|-\rangle$.
 - If there is a photon, the spin state is $|+\rangle$.
- QND The spin state unchanged between measurements.
 - Hence, can be cycled many times to collect photons.
- Nonideal measurements can be analyzed by POVM.

- Send: Optical control of the spin qubit in the dot via trion & cavity mode generates a photon wave packet
 - entangling the spin qubit with the (0,1) photon states
- Receive: reverse optical pulse to absorb photon completely
 - net: entangling sender spin qubit with receiver spin qubit
- Basis for distributed computation to scale up a Q computer

Wang Yao, Renbao Liu, and L. J. Sham, PRL **95**, 030504 (2005), PRB **72**, 081306 (R) (2005), J. Opt. B: Quantum Semiclass. Opt. **7**, S318 (2005).

Cavity and wave guide in photonic lattice

Bong-Shik Song, Susumu Noda, Takashi Asano, Yoshihiro Akahane, Nature Materials 05

L J Sham 6/11/08

24

(a)

Evidence for Strong Coupling CQED

Yoshie, Schere, Hendrickson, Khitrova, Gibbs, Ruppe, Ell, Shchekin, Deppe, Nature 04