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Motivations 
�  Related to the dark sector  
◦  Dark portal 
◦  Dark matter itself (or part of dark matter) 
◦  Sommerfeld enhancement 

�  Solution to muon g-2 problem 

�  Sub-keV dark photons can be produced inside the Sun 
and can be detected by detectors at the Earth 

�  Mimic the signal of light dark matter 
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The Lagrangian 
The Standard Model 
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Origins of mass 
�  Massive U(1) gauge theory 

�  In this talk,  
�  Should there be a dark Higgs?  
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Direct Detection 
�  Signal rate 

◦  Total absorption rate;	

◦  Solar flux; 
◦  Branching ratio to desired signals. 

Branching ratio to the 
desired signal. 
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Total absorption rate 
�  Feynman diagram: 

 
�  Matrix element: 
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Total absorption rate 
�  mV scaling 

�  Non-magnetic material 

�  In the small mV limit, 
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Total absorption rate 
�  Total absorption rate 
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Total absorption rate 
�  Total absorption rate 
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If transverse modes dominate 
�    
�  The effective atom number density should as small as 

possible.  
�  CAST experiment 

 
◦  Unevenly distributed low density detector 

�  Dark matter detectors 
◦  Signal rates depend on the gap between the shielding and the 

detector 
◦  Daily modulation and annual modulation 
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If longitudinal mode dominates 
�    

�  High density, large volume           dark matter detectors 

�  No significant modulations 

�L / nA



Longitudinal or 
transverse, it’s 
a question! 



Solar flux 
�  Total production rate mV scaling 

�  In arXiv:0801.1527 (JCAP 0807,008 (2008))  
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Solar flux 
�  Resonant production 

 
 
Transverse resonance               Longitudinal resonance 
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Solar flux 
�  Resonant production 

�  In thermal field theory, this is equivalent to that a 
thermal bath of photon slowly transits into dark 
photons. 

On shell 

A V



Solar flux 
�  Resonant production 
◦  On shell conditions 
Transverse photon                      Dark photon 
 
 
 
◦  Longitudinal plasmon  
(collective motion of electrons) 
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Solar flux 
�  Bose-Einstein distribution for both  T-photon and L-

plasmon, the dark radiation powers are  
 
 
 
 
�  Inside the Sun, 

�    

1 eV . !p . 300 eV

T�mode dominates , 1 eV . mV . 300 eV

L�mode dominates , mV ⌧ 1 eV
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Stellar constraints 

Life time of 
the Sun 

The red giant stars 

Considering only 
the transverse 
contribution. 

P
dark

 P
luminosity

Frieman, Dimopoulos and 
Turner (PRD 1987), 
Raffelt and Dearborn 
(PRD 1988), Raffelt and 
Starkman (PRD 1989) 



Requirement to detectors 
�  Based on the correct analysis, the total absorption rate 

for the solar dark flux 

�  High density, large volume 

�  Inside the Sun, 1 eV . !p . 300 eV

The detector should 
be able to detect    
~ 100 eV  energy 
deposition 

�abs / nA



XENON10 limit 
�  XENON10  

�    

Number of electrons 

300 eV ~ 25 electrons 

Br ⇡ 1

Photo-ionization  
dominates. 

E1 ⇡ 12 eV



CoGeNT limit 
�  CoGeNT data available from 400 eV.  

�    Br ⇡ 1

Photo-ionization  
dominates. 



Stueckelberg case 
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Higgsed case 
�  Direct detection 

◦  Solar flux 

◦  Total absorption rate 

◦  Branching ratio to desired signal 



Solar flux 
�  Processes in the Stueckelberg case are still there: 

�  Higgs-strahlung 
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Solar flux 
�  Higgs-strahlung 

�  Resonance decay 

    Transverse photon decay dominates. 
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Total absorption rate 
�  Dark Higgs-strahlung process dominates in small mV 

region, using Goldstone equivalence theorem: 

 



Total absorption rate 
�  Total absorption rate, summing over all possible final 

state 
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Total absorption rate 
�  Total absorption rate: 
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Absorption rate 
�  Inelastic scattering of dark Higgs 

�                 for both XENON10 and CoGeNT 

Energy injected 
into the medium 
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Total absorption rate 
�  Issue with 

◦  Lorentz symmetry is broken by the medium to the SO(3) 
rotation symmetry. 

◦  In general,                              .  

◦  However, the dependence on k2 is suppressed if                     . 

◦  This is always true in our situation.  
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Higgsed case 

e’ = 0.1	




Higgsed case 

XENON10, Sun 

RG 



Summary and outlook  
�  The stellar bounds are significantly strengthened in the 

small mV region.  
�  Large volume, high density materials should be used to 

build solar dark photon detectors.  
�  For the Stueckelberg case, the XENON10 result gives 

the most stringent constraint on the parameter space. 
�  For the Higgsed case, we expect the next generation 

dark matter detector can be more sensitive to the 
current stellar constraint.  

�  Future detectors with low electron recoil threshold 
DAMIC (Alvaro’s talk), Sub-MeV detectors (Essig et al), 
Semiconductor detectors (Graham et al). 

 


