HEREBEDRAGONS: THE UNEXPLORED CONTINENTS OF THE CMSSM

Timothy Cohen (SLAC)

with Jay Wacker

arXiv:13XX.soon

MCTP Light Dark Matter Workshop April 17, 2013

Disclaimer

This is not a talk on light dark matter, but

dark matter phenomenology plays a central role.

Outline

- I) Motivation
- II) CMSSM Cartography
- III) Circumnavigating the CMSSM
- IV) Conclusions

MOTIVATION

4/41

The MSSM in the Era of Higgs Discovery

- A SM-like Higgs has been discovered at 125 GeV.
- This measurement is "consistent" with the MSSM (and its extensions).
 - Stops can lie from O(100) GeV to O(100) TeV.

The MSSM in the Era of Higgs Discovery

• A SM-like Higgs has been discovered at 125 GeV.

```
ATLAS [arXiv:1207.7214]
CMS [arXiv:1207.7235]
```

- This measurement is "consistent" with the MSSM (and its extensions).
 - Stops can lie from O(100) GeV to O(100) TeV.
- The motivation for weak-scale superpartners still stands:
 - Solves the hierarchy problem;
 - Explains the dark matter;
 - Predicts gauge coupling unification.

The MSSM in the Era of Higgs Discovery

- The parameter space of the MSSM is enormous.
 - The soft supersymmetry breaking Lagrangian includes more than 120 new dimensionful terms.
- How can we map out all possible signatures?
 - Simplified models: isolate particles responsible for the signature of interest. The parameter space becomes tractable; there are typically only a few masses and branching ratios to specify.

Alwall, Le, Listanti, Wacker [arXiv:0809.3264]; Alwall, Schuster, Toro [arXiv:0810.3921]; LHC New Physics Working Group [arXiv:1105.2838]

- pMSSM: phenomenologically motivated reduction to 19 parameters. Berger, Gainer, Hewett, Rizzo [arXiv:0812.0980]
- CMSSM/mSUGRA: 4 parameters.

Chamseddine, Arnowitt, Nath [PRL 49 (1982)]; Barbieri, Ferrara, Savoy [PLB (1982)]; Hall, Lykken, Weinberg [PRD (1983)]

- 4 parameters is potentially tractable.
- Can we understand all predictions of the CMSSM ansatz?

A simple ansatz - a wide range of dynamics

- The CMSSM is a four dimensional subspace of the *R*-parity conserving MSSM.
- It is defined at the GUT scale by the following (real) inputs:
 - The unified scalar soft mass, M_0 .
 - The unified gaugino mass: $M_{1/2}$.
 - The unified A-term: A_0 .
 - The ratio of the Higgs vevs: aneta (traded for the B_μ term).

A simple ansatz - a wide range of dynamics

- The CMSSM is a four dimensional subspace of the *R*-parity conserving MSSM.
- It is defined at the GUT scale by the following (real) inputs:
 - The unified scalar soft mass, M_0 .
 - The unified gaugino mass: $M_{1/2}$.
 - The unified A-term: A_0 .
 - The ratio of the Higgs vevs: aneta (traded for the B_μ term).
- These parameters are evolved to the weak scale using the renormalization group equations (RGEs).
- The μ -term is determined by requiring that the Z-boson mass match the measured value.
- Since the RGEs are integrated over 14 orders of magnitude, the relation between the low energy parameters and the inputs is highly non-linear.

The state of the art

Both ATLAS and CMS put limits on the CMSSM:

• They exclude a region of the $M_{1/2}$ versus M_0 plane for a fixed choice of A_0 and $\tan \beta$.

The state of the art

Both ATLAS and CMS put limits on the CMSSM:

- They exclude a region of the $M_{1/2}$ versus M_0 plane for a fixed choice of A_0 and $\tan \beta$.
- What is the Higgs mass?
- Does the neutralino overclose the Universe?

Our approach to the CMSSM

- We will require that the Higgs mass is ~125 GeV and the neutralino comprises all of the dark matter.
- "Quadrants" are defined by the $\mathrm{sign}(A_0)$ and the $\mathrm{sign}(\mu)$.
- Schematically, the RGEs for *A* and *B* terms are given by

$$16 \pi^2 \frac{d}{dt} A = A \left(|y|^2 - g^2 \right) + y g^2 M,$$

$$16 \pi^2 \frac{d}{dt} B = B \left(|y|^2 - g^2 \right) + \mu \left(A y^{\dagger} + g^2 M \right),$$

 The low energy behavior can be very different depending on these signs.

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"
- "stop coannihilation"

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"
- "stop coannihilation"

- "light \$\tilde{\chi}^0\$": annihilation is dominated by the Z⁰ and h poles.
 "well-tempered": annihilation via Higgsino/Bino mixing to W⁺ W⁻.
 "A⁰ pole": annihilation is dominated by an s-channel A⁰ resonance.
 "stau coannihilation"
 - "stop coannihilation"

- "light \$\tilde{\chi}^0\$": annihilation is dominated by the \$Z^0\$ and \$h\$ poles.
 "well-tempered": annihilation via Higgsino/Bino mixing to \$W^+ W^-\$.
 "\$A^0\$ pole": annihilation is dominated by an \$s\$-channel \$A^0\$ resonance.
 "stau coannihilation"
- "stop coannihilation"

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- "A⁰ pole": annihilation is dominated by an s-channel A⁰ resonance.
 "stau coannihilation"
- "stop coannihilation"

• What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"

"stop coannihilation"

• What process determines the relic abundance?

- "light $\widetilde{\chi}^0$ ": annihilation is dominated by the Z^0 and h poles.
- "well-tempered": annihilation via Higgsino/Bino mixing to $W^+ W^-$.
- " A^0 pole": annihilation is dominated by an *s*-channel A^0 resonance.
- "stau coannihilation"

"stop coannihilation"

The CMSSM should be compact

- Requiring a 125 GeV Higgs boson implies that one can not take M_0 to be arbitrarily large.
- Relic density
 - The pure Bino limit bounds $M_{1/2}$.
 - The lightest gaugino is the Bino.
 - As one decouples the scalars, the Bino becomes inert.
 - Its early Universe annihilation cross section goes to zero.
 - It freezes out with too large a relic density.
 - The pure Higgsino limit bounds M_0 .
 - As one decouples the gauginos, the LSP becomes Higgsino like.
 - If the mass of a pseudo-Dirac Higgsino is greater than ~1 TeV, it freezes out with too large a relic density.
- Requiring the lifetime of our vacuum be longer than the age of the Universe bounds A_0 .
- Perturbativity of the bottom Yukawa coupling bounds an eta.

CMSSM CARTOGRAPHY

Tools

- SoftSUSY v3.3.7 computes the low energy spectrum from the CMSSM inputs. Allanach [arXiv:hep-ph/0104145]
 - The two loop MSSM RGEs are included (leading log decoupling is accounted for by the inclusion of all 1-loop finite terms).
 - The two loop contributions to the Higgs potential are included.
- DarkSUSY v5.1.1 computes the relic density and direct detection cross sections.
 - All 2-2 scattering processes are included. Gondolo, Edsjo, Ullio, Bergstrom, Schelke [arXiv:astro-ph/0406204]
- SUSY-HIT v1.3 computes the decay tables.

Djouadi, Muhlleitner, Spira [arXiv:hep-ph/0609292]

• We have had 186+ cores running for roughly 4 continuous months.

Constraints

• We take a 3 GeV error for the theoretical prediction for the Higgs mass: $122 \text{ GeV} < m_h < 128 \text{ GeV}$

Allanach, Djuadi, Kneur, Porod, Slavich [arXiv:hep-ph/0406166]

• We require the relic density be in the range:

 $0.08 < \Omega h^2 < 0.14$

 We require that the lifetime for the vacuum to decay to a charge/color breaking minimum be longer than the age of the Universe:

$$|a_t|^2 < (7.5 m_{q_3}^2 + 7.5 m_{u_3^c}^2 + 3 (m_{H_u}^2 + |\mu|^2)).$$

- with a similar condition for staus. Kusenko, Langacker, Segre [arXiv:hep-ph/9602414]
- We require that the chargino mass satisfy a naive LEP bound: $\widetilde{m}_{\chi^+} > 100~{\rm GeV}$

Charting the CMSSM

- Welltempered
- A^0 pole
- stau
 coann
- stop
 coann

Charting the CMSSM

• light $\widetilde{\chi}^0$

 Welltempered

- A^0 pole
- stau
 coann
- stop
 coann

Lessons

- The CMSSM is compact.
- The size of the allowed parameter space is huge!
- Our classification scheme is a useful way to organize the CMSSM.
- There is a range of possible low energy signatures.
- The rest of this talk will be devoted to exploring them.

CIRCUMNAVIGATING THE CMSSM

Light $\widetilde{\chi}^0$

Setting sail for light $\tilde{\chi}^0 \iff \tilde{m}_{\chi^0} < 75 \text{ GeV}$

• 2 TeV $\lesssim M_0 \lesssim 12$ TeV • 5 $\lesssim \tan \beta \lesssim 50$

Light $\tilde{\chi}^0$ implies light gluinos

Has the LHC excluded this region?

• Take as a benchmark:

	M_0	$M_{1/2}$	A_0	aneta	$\operatorname{sign}(\mu)$	$ \mu $	B_{μ}
ł	5455.8	132.315	-3480.24	15.5977	1	301.773	2.01762×10^8

- Squarks and sleptons are heavier than 5 TeV.
- The gluino is 409 GeV and the LSP is 57 GeV.

$$\widetilde{g} \to q + \overline{q} + Z^0 + \widetilde{\chi}_0$$

- The 7 TeV CMS search yields $\sigma imes {
m BR} \lesssim 1$. CMS [arXiv:1204.3774]

• The 7 TeV prediction is $\sigma imes BR \simeq 1.0 ~\mathrm{pb}$.

•
$$\widetilde{g} \to q + \overline{q} + \widetilde{\chi}^0$$

• The 7 TeV CMS Razor search does not exclude this channel. \sim CMS [CMS-PAS-SUS-12-005]

•
$$\widetilde{g} \to q + \overline{q}' + W^{\pm} + \widetilde{\chi}_0$$

- The 7 TeV ATLAS search for (requiring same sign W^{\pm}) does not
 - exclude this channel. ATLAS [arXiv:1208.0949]
- So the exclusion is borderline at 7 TeV without performing any combinations.
- Likely excluded at 8 TeV (unless efficiency drops for low masses; no detailed efficiency plots are public yet).

CIRCUMNAVIGATING THE CMSSM

Well-tempered

Setting sail for well-tempered

- Welltempered
- A^0 pole
- stau
 coann
- stop
 coann

• 4 TeV $\lesssim M_0 \lesssim 20$ TeV • 5 $\lesssim \tan \beta \lesssim 50$

Will direct detection exclude this region?

• A 1-ton Xenon experiment can reach spin-independent cross sections of 5×10^{-12} pb at 300 GeV.

Will direct detection exclude this region?

• A 1-ton Xenon experiment can reach spin-independent cross sections of 5×10^{-12} pb at 300 GeV.

What about the LHC?

The LHC will have little impact on the well-tempered spectra.

CIRCUMNAVIGATING THE CMSSM

 A^0 pole annihilation

Timothy Cohen (SLAC)

Setting sail for A^0 pole annihilation

The squark-gluino plane

^{1st} quadrant is similar.

Direct detection

• 1st quadrant is similar but 4^{th} quadrant extends below 10^{-14} pb.

CIRCUMNAVIGATING THE CMSSM

Stau coannihilation

Setting sail for stau coannihilation

• 200 GeV $\lesssim M_0 \lesssim 3$ TeV

• $5 \lesssim \tan \beta \lesssim 60$

Timothy Cohen (SLAC)

Stau-coann: direct detection

34/41

Timothy Cohen (SLAC)

Stau-coann: direct detection

- A 1-ton Xenon experiment can reach spin-independent cross sections of 5×10^{-12} pb at 300 GeV. Dark matter limit plotter [http://dmtools.brown.edu/]
- Direct detection can probe all of the 2nd quadrant.

34/41

Stau-coann: squark-gluino plane

Stau-coann: squark-gluino plane

Are these spectra discoverable at the 14 TeV LHC?

A stau-coann benchmark (3rd quad)

Input parameters								
M_0	$M_{1/2}$	A_0	an eta	$\operatorname{sign}(\mu)$	$ \mu $	B_{μ}		
259.515	900.862	-2296.71	9.23077	-1	-1555.68	7.574×10^7		

- The LSP is 383.52 GeV; the lighter stau is 383.8 GeV.
 - The stau lifetime is $O(10^{-2} \text{ s})$. Probed via long-lived stau searches?

Citron, Ellis, Luo, Marrouche, Olive, Vries [arXiv:1212.2886]

A stau-coann benchmark (3rd quad)

Input parameters								
M_0	$M_{1/2}$	A_0	an eta	$\operatorname{sign}(\mu)$	$ \mu $	B_{μ}		
259.515	900.862	-2296.71	9.23077	-1	-1555.68	7.574×10^7		

- The LSP is 383.52 GeV; the lighter stau is 383.8 GeV.
 - The stau lifetime is $O(10^{-2} \text{ s})$. Probed via long-lived stau searches?

Citron, Ellis, Luo, Marrouche, Olive, Vries [arXiv:1212.2886]

- The gluino is 1980 GeV.
- The squark masses are

	\widetilde{q}	\widetilde{b}_1	\widetilde{b}_2	\widetilde{t}_1	\widetilde{t}_2
$m [{ m GeV}]$	1780.8	1529.9	1715.3	1067.2	1562.9

- The gluino branching ratios are
 - $\widetilde{g} \rightarrow \underbrace{t}_{1,2} + \overline{t}$ [52%]
 - $\widetilde{g}
 ightarrow b_{1,2} + \overline{b}$ [20%]
 - $\widetilde{g}
 ightarrow \widetilde{q} + \overline{q}$ [28%]
- Probed via gluino pair production?

CIRCUMNAVIGATING THE CMSSM

Stop coannihilation

Setting sail for stop coannihilation

^{• 2} TeV $\lesssim M_0 \lesssim 12$ TeV

• $\tan\beta \lesssim 50$

Stop-coannihilation phenomenology

Stop-coannihilation phenomenology

A large portion of these spectra will require a machine beyond the 14 TeV LHC.

ALMOST HOME

Conclusions

Conclusions

- The CMSSM provides a simple ansatz which allows one to explore the phenomenology of the full parameter space.
- We provide a map of the CMSSM which is consistent with a Higgs at 125 GeV and thermal dark matter comprised of neutralinos.
- We demonstrate that the parameter space is compact.
- What regions will remain unconstrained after LHC14 and 1 Ton scale spin-independent direct detection?
 - The 4th quadrant of A^0 -pole annihilation;
 - Large portions of the stop coannihilation regions.
- Note we need LHC results to be presented as generally as possible so it is easy to interpret bound for non-trivial models.