V Signals of Dark Matter

Roni Harnik, Fermilab

with Joachim Kopp and Pedro Manchado 1202.6073

See related works-Pospelov 1103.3261 Pospelov and Pradler 1203.0545 Yesterday's talk

Direct Detection

- In past decades direct detection collaborations have made a heroic (and successful!) effort in background reduction.
- Try as you might, these experiments are still completely exposed to the sun....

...in neutrinos!!!

Direct Detection

The irreducible background from solar and atmospheric neutrinos will be the eventual end-game of direct detection.

Direct Detection

The irreducible background from solar and atmospheric neutrinos will be the eventual end-game of direct detection.

 $\left(relativistic \text{ version of } \frac{dR}{dE_R} = \frac{M_N N_T \rho_\chi \sigma_n}{2m_\chi \mu_{ne}^2} F^2 \frac{(f_p Z + f_n (A - Z))^2}{f_n^2} \int_{v_{min}} \frac{f(v)}{v} \right)$

- * Electron recoil:
 - pp neutrinos are above threshold. High flux.

$$E_r^{\max} = \frac{2E_\nu^2}{m_T + 2E_\nu}$$

 But, lower cross section, (phase space and coherence).

scattering on effectively free electrons. All experiments in one plot!

New Physics?

Can new physics in the neutrino sector "raise" this background and give interesting signals?

Since Joseph cover nuclear, I'll focus on e-recoil.

New Physics?

Can new physics in the neutrino sector "raise" this background and give interesting signals?

Since Joseph cover nuclear, I'll focus on e-recoil.

Outline

- New light gauge bosons (A')
- * Electron recoil
 - SM neutrinos or light steriles
 - Heavy steriles
- Potential sources of modulation-
 - Solar distance
 - Matter effects
 - o Channeling
- Constraints on A's
- Conclusion.

New Physics Models

* Many models with new light gauge boson:

- A light **B-L** gauge boson
- Kinetically mixed U(1) (a.k.a **dark photon**).
- New sterile neutrinos can also come in handy.
 Can be emitted by the sun via mixing or oscillation.

Another "new" gauge boson that can couple to neutrinos is the **photon**.
 a magnetic dipole moment: μ_ν νσ^{μν} ν F_{μν}

***** B-L is constrained. There are holes:

***** B-L is constrained. There are holes:

***** B-L is constrained. There are holes:

A Light Gauge Boson

The exchange of A' contributes to neutrino-nucleus and neutrino-electron scattering:

A Light Gauge Boson

What does a direct detection experiment see? back to the master formula:

CoGeNT or DAMA?

If we want to do CoGent or DAMA there is clear tension with XENON100 (and also Borexino).

Heavy Sterile

* Is there a way around XENON?

Can we get a sharp threshold?

* The solar flux has lines....

A kinematic threshold near the ⁷Be line. Its tuned...*

* I would like to thank IDM and its variants for the moral license to do this.

Heavy Sterile

* Interesting spectra can arise:

Modulation

Modulation and the Sun

- Annual modulation is an iportant part of past and (hopefully) future anomalies.
- * What modulation signals can the Sun produce?

* Many possibilities for modulation:

- o daily.
- annually.
- even semi-annually.

- Closest to the Sun on Jan 3rd (wrong phase for DAMA).
- The amplitude is 1.6% (flux is double that).
- Introduce oscillation on AU scale (with sterile):

$$P_{1\to 2} \sim \sin^2 2\theta \sin^2 \frac{\Delta m_{12}^2 L}{2E_{\nu}}$$

- Closest to the Sun on Jan 3rd (wrong phase for DAMA).
- The amplitude is 1.6% (flux is double that).
- Introduce oscillation on AU scale (with sterile):

- Closest to the Sun on Jan 3rd (wrong phase for DAMA).
- The amplitude is 1.6% (flux is double that).
- Introduce oscillation on AU scale (with sterile):

- Closest to the Sun on Jan 3rd (wrong phase for DAMA).
- The amplitude is 1.6% (flux is double that).
- Introduce oscillation on AU scale (with sterile):

Just-So

* A variety of modulation amplitudes are possible

Just-So

* A variety of modulation amplitudes are possible

Matter Effects

* The new gauge boson can lead to new "MSW-like" matter effects: $V_{matter} = \frac{g_{\nu}}{(a_{ma}n_{ma} + a_{ma}n_{ma} + a_{ma}n_{ma})}$

$$V_{\text{matter}} = \frac{g_{\nu}}{M_{A'}^2} (g_e n_e + g_p n_p + g_n n_n)$$

- * Active-sterile oscillations in matter can be very different from those in vacuum.
- Day-night asymmetry due to an oscillation b/ w among sterile species in matter. This asymmetry can be large.
- * The matter oscillation length, $L_{\rm osc} = 4\pi E/\Delta m^2$, can be anywhere between a kilometer and the earth radius.

Zenith Angles

- At noon, the sun is high in the sky in summer.
 Low in winter.
- * At midnight, the Sun is lower *below* the horizon in winter. Higher in summer.

Zenith Angle

* The average baseline in rock for solar neutrinos going to Gran Sasso modulates:

* A strong daily modulation is induced here too.

Channeling

- * The dark matter signal is isotropic to zeroth order.
- * A signal coming from the sun is maximally anisotropic.
- * Imagine channeling occurs in some target crystals:

★ A highly angle dependent effect → modulation!

Channeling

* This can lead to a **daily** modulation, as well as a **annual** or **semi-annul** modulation.

Concluding

- * Dark matter and neutrino experiments share some features: low backgrounds, large exposure, low thresholds.
- * They can probe similar physics.
- New physics connecting the SM to neutrinos can lead to interesting direct detection signals:
 - New light gauge bosons.
 - Neutrino dipole moments.
- * Many possibilities for rich **modulation** signals.

Deleted Scenes

- * The situation is very different w/ nuclear recoil.
- * SNO has measured Boron 8 neutrinos through deuterium dissociation.
- * SNO is probing a momentum transfer that is only a factor of a few higher than DAMA or CoGent.

* A light mediator does not buy you much.

- * Deuterium dissociation is an inelastic process.
- * The standard model rate at SNO is dominated by the axial-vector component of the Z interaction.
- * The vector component is suppressed by....

$$\frac{\sigma_{\nu_b-\text{Nucl}}(\text{elastic})}{\sigma_{\nu_b-\text{Nucl}}(\text{inelastic})} \sim \frac{A^2}{E_{\nu}^4 R_N^4} \sim 10^8$$
understanding this is in progress.

- * Deuterium dissociation is an inelastic process.
- * The standard model rate at SNO is dominated by the axial-vector component of the Z interaction.
- * The vector component is suppressed by....

$$\frac{\sigma_{\nu_b-\text{Nucl}}(\text{elastic})}{\sigma_{\nu_b-\text{Nucl}}(\text{inelastic})} \sim \frac{A^2}{E_{\nu}^4 R_N^4} \sim 10^8$$
whether the standing this is in progress.

Pospelov:

$$\langle d|\exp(i\mathbf{q}\mathbf{r}^{(n)}) + \exp(i\mathbf{q}\mathbf{r}^{(p)})|np\rangle = 2\langle d|np\rangle + i\mathbf{q}\cdot\langle d|\mathbf{r}^{(n)} + \mathbf{r}^{(p)}|np\rangle - \frac{q_kq_l}{2}\langle d|r_k^{(n)}r_l^{(n)} + r_k^{(p)}r_l^{(p)}|np\rangle = -\frac{q_kq_l}{4}\langle d|r_kr_l|np\rangle$$
1103.3261

* Interesting spectra are achievable:

SNO constraints may still be too much....(in progress)

Absorption

- * If the sterile scattering cross section is high, its m.f.p may be smaller than earth radius.
- Neutrinos are captured during the night, but reach the detector during the day.
- * Steriles can still be produced via oscillation outside the sun.
- * The sterile flux may still be adjusted to fit the signal strength in direct detection.