Probing dark matter couplings to top and bottom at the LHC

Tongyan Lin KICP/UChicago

with Liantao Wang and Rocky Kolb, arXiv:1303.6638

April 17, 2013

Dark matter at colliders

"Mono" searches

- Monojets: DM production (E_T^{miss}) plus one or two jets
- Can arise from initial state radiation of quarks, gluons

- Useful collider probe for light dark matter, and operators with SD scattering
- Related: monophoton, mono-Z, mono-leptons, mono-b

Dark matter at colliders

"Mono" searches

- Monojets: DM production (E_T^{miss}) plus one or two jets
- Can arise from initial state radiation of quarks, gluons

- Useful collider probe for light dark matter, and operators with SD scattering
- Related: monophoton, mono-Z, mono-leptons, mono-b

Constraints on operators

Model-independent effective field theory (EFT) approach: simple connection to direct detection and relic abundance (annihilation cross section)

Single scale M_{st} parameterizes size of interactions:

$$\begin{array}{c} \mathbf{D1/Scalar}: \mathcal{O} = \frac{m_q}{M_*^3} \bar{q} q \bar{X} X \\ \hline \\ \mathbf{O} \\ \mathbf{O$$

Map to direct detection

Constraints on operators

Constraints on M_* much worse for scalar operator:

Scalar operator

A closer look at scalar operators:

$$\mathcal{O}_S \equiv \frac{m_q}{M_*^3} \bar{q} q \bar{X} X \sim \frac{y_q g_X}{m_\phi^2} \bar{q} q \bar{X} X$$

- Why m_q ? Flavor constraints \rightarrow Minimal Flavor Violation
- Suppressed couplings to light quarks means suppressed monojet signal from gluons and light quarks
- ullet ATLAS published result (2012) only consider up to m_c

This operator gives rise to spin-independent scattering:

$$\sigma_n = \frac{(0.38m_n)^2 \mu_X^2}{\pi M_*^6} \approx 2 \times 10^{-38} \text{cm}^2 \left(\frac{30 \text{ GeV}}{M_*}\right)^6$$

(Other operators like $\bar{q}\gamma^5q\bar{X}\gamma^5X$ give similar collider constraints but velocity-suppressed direct detection cross sections.)

Searches with bottoms and tops

- Include heavy quarks in monojet signal
- Significant improvement in constraints on scalar interactions with b-tagging and $t\bar{t}$ final states
 - heavy flavor production: y_q^2 wins over pdf suppression
 - ullet b-enriched final states from bottoms and tops
- Direct search for couplings to third generation

DM production

Direct *b* production:

• $bg o bXar{X}$, $gg o bar{b}Xar{X}$

DM production in association with tops:

• $bg \rightarrow bX\bar{X}$, $gg \rightarrow b\bar{b}X\bar{X}$

Factor of ~ 10 larger cross section than direct b production.

b-tagging on monojets

Monojet:

- No more than 2 jets with $p_T > 50 \text{ GeV}$

Mono-b:

• b-tag on leading jet

b-tagging efficiency (calibrated on tops) $\sim 60\%$, mistag $\sim 0.2\%$ for light quarks at ATLAS

Dominant SM backgrounds for monojet searches: $Z+{\rm jets}$ ($W+{\rm jets}$) cut from 500 fb to around 15 fb with $b-{\rm tag}$.

Mono-b

	Process	Monojet	<i>b</i> -tag	\emph{b} -tag on \emph{j}_1
Signal	$ar{X}X+jets$	11 fb	0.9 fb	0.7 fb
	$\bar{X}X + b$ +jets	65 fb	40 fb	33 fb
	$\bar{X}X + t\bar{t}$	120 fb	63 fb	41 fb

Table: Inclusive mono-b search at 8 TeV: Cross sections after cuts applied. For the signal we take $M^*=50~{\rm GeV}$.

Improvement in bounds from: (1) overall monojet production rate is bigger (2) monojets are b-enriched

Simulation of Events:

- MadGraph5 + PYTHIA6 + Delphes
- NLO cross sections from MCFM-Dark (Fox and Williams)

Mono-b MET distribution

- Direct b-production isn't significantly harder
- Z+jets often initiated by at least one valence quark

Mono-b p_T distribution

- For b production, typically just one hard b-jet
- For top production, second jet may be harder, b-tagged 30% of the time

Top kinematics: events passing mono-b cuts

Associated production of $t\bar{t}$ can look like "mono-b" cuts if one top is boosted and the other is not too hard.

Efficiency WRT veto on 3rd jet: 0.17

Mono-b limits

$tar{t}$ final state

A direct search for $t\bar{t}$ + MET would do better in this case:

 \rightarrow SUSY top-partner searches

We apply the ATLAS 8 TeV, 13 fb⁻¹ study with 1 lepton in the final state:

- 4 jets with $p_T > (80, 60, 40, 25) \text{ GeV}$ with 1 b-tag
- \bullet We use signal region with $E_T^{miss}>225$ GeV, $m_T>130$ GeV

$tar{t}$ final state

Dominant SM background is $t\bar{t}$ dileptonic decay, where one lepton is either missed or a τ .

Limits from recasting stop search

 $\sim 20\%$ improvement in M_* constraint compared to mono–b. Another 10% possible with all-hadronic final state.

Unitarity

Bounds on M_{\ast} still low - what do these constraints mean? (Shoemaker and Vecchi; Fox, Harnik, Primulando, Yu):

$$\frac{\sqrt{3}}{8\pi} \frac{m_q}{M_*^3} m_{\chi\bar{\chi}}^2 \lesssim \frac{1}{2}$$

b-production seems safe, for top production it depends...

Example: neutral scalar mediator

• Interactions through a mediator of mass M_{ϕ} can go through a resonance:

- Other constraints can also apply depending on the model.
- If the scalar is the Higgs, the constraints on Higgs invisible decay $Br(H \to \chi \chi)$ are already stronger.

Conclusions

- Monojets searches useful to study DM-SM interactions
- For scalar operators, final states are b enriched. "Mono-b" gives significant improvement in bounds.
- \bullet Top production even more important: direct $t\bar{t}+E_T^{miss}$ search
- Direct probe of couplings to third generation

Top kinematics

Top kinematics

Compared to $t\bar{t}$ or stop pair production, in this case each particle carries off about $\sim 1/4$ of the energy in roughly uncorrelated directions \rightarrow large E_T^{miss} .

2D parton level distributions for energies of tops (left) and DM (right)

Loops

FIG. 1. Typical tree-level (left) and loop-level (right) diagrams leading to monojet events. The black squares denote insertions of four-fermion operators.

Haisch, Kahlhoefer, Unwin: M_* limit raised to 150 GeV.

Scalar operator constraints

 Recent paper by Bhattacherjee et al. [1212.5013], "Model Independent Analysis of Interactions between Dark Matter and Various Quarks":

 Kamenik and Zupan 2011 - "monotop" from MFV and dark matter