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Dark matter at colliders

“Mono” searches
e Monojets: DM production (EZ***) plus one or two jets

e Can arise from initial state radiation of quarks, gluons
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Dark matter at colliders

“Mono” searches
e Monojets: DM production (EZ***) plus one or two jets

e Can arise from initial state radiation of quarks, gluons

DM

o Useful collider probe for light dark matter, and operators with
SD scattering

e Related: monophoton, mono-Z, mono-leptons, mono-b



Constraints on operators

Model-independent effective field theory (EFT) approach: simple
connection to direct detection and relic abundance (annihilation
cross section)

Single scale M, parameterizes size of interactions:
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Map to direct detection
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Constraints on operators

Constraints on M, much worse for scalar operator:
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Scalar operator

A closer look at scalar operators:

m - _

Os = —9gqX X ~ Y19% g0 X X
M3 mg

e Why m,? Flavor constraints — Minimal Flavor Violation

e Suppressed couplings to light quarks means suppressed
monojet signal from gluons and light quarks

e ATLAS published result (2012) - only consider up to m,
This operator gives rise to spin-independent scattering:

0.38m,,)2 2 B 30 GeV\°
op = (0-38mn)"pix M\Zg FX ~ 2 % 10738¢m? <M* >

(Other operators like gy°¢X~° X give similar collider constraints but
velocity-suppressed direct detection cross sections.)



Searches with bottoms and tops

e Include heavy quarks in monojet signal

e Significant improvement in constraints on scalar interactions
with b-tagging and ¢t final states

e heavy flavor production: yg wins over pdf suppression
e D-enriched final states from bottoms and tops

e Direct search for couplings to third generation

. Limits on o, from stop searches
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DM production

Direct b production:
e bg — bX X, gg— bbXX

g RS

DM production in association with tops:
e bg — bXX, gg — bbXX
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Factor of ~ 10 larger cross section than direct b production.



b-tagging on monojets

Monojet:
° E?”SS > 350GeV, plT > 100 GeV, No lepton
e No more than 2 jets with pr > 50 GeV
Mono-b:
e b-tag on leading jet
b-tagging efficiency (calibrated on tops) ~ 60%, mistag ~ 0.2% for
light quarks at ATLAS

Dominant SM backgrounds for monojet searches: Z+jets (W +
jets) cut from 500 fb to around 15 fb with b-tag.



Mono-b

Process Monojet | b-tag | b-tag on j;
X X +jets 11fb | 0.91fb 0.7 fb
Signal | XX +b+jets | 65fb | 40 fb 33 fb
XX +tt 120 fb | 63 fb 41 fb

Table: Inclusive mono-b search at 8 TeV: Cross sections after cuts

applied. For the signal we take M™* = 50 GeV.

Improvement in bounds from: (1) overall monojet production

rate is bigger (2) monojets are b-enriched

Simulation of Events:
® MadGraph5 + PYTHIAG6 + Delphes
® NLO cross sections from MCFM-Dark (Fox and Williams)




Mono-b MET distribution

8 TeV, 20 fb~!, pr(b-jet) > 100 GeV

- DM, t production
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e Direct b-production isn't significantly harder
e /jets often initiated by at least one valence quark

e tt has different kinematics and a harder spectrum; it isn't
coming from ISR



Mono-b pr distribution

8 TeV, 20 fb!, Fr > 350 GeV
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e For b production, typically just one hard b-jet

e For top production, second jet may be harder, b-tagged 30%
of the time



Top kinematics: events passing mono-b cuts

Associated production of ¢t can look like “mono-b" cuts if one top
is boosted and the other is not too hard.

— top with smaller pT
— top with larger pT |
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Efficiency WRT veto on 3rd jet: 0.17



M, [GeV]

Mono-b limits

Constraints on m,gqX X from mono-b searches
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tt final state

A direct search for tt + MET would do better in this case:

9 %, t

=k

— SUSY top-partner searches

We apply the ATLAS 8 TeV, 13 fb~! study with 1 lepton in the

final state:
e 4 jets with pr > (80, 60,40, 25) GeV with 1 b-tag
e We use signal region with E%“'SS > 225 GeV, mp > 130 GeV



tt final state

8 TeV, 13 fh~1, 1 lepton, mr > 120 GeV 8 TeV, 13 fb~1, 1 lepton, £ > 150 GeV

— DM, M, =50 GeV
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Dominant SM background is ¢t dileptonic decay, where one lepton
is either missed or a 7.



Limits from recasting stop search

Constraints on m(,zjqf( X from stop searches

140 . Limits on o, from stop searches
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~ 20% improvement in M, constraint compared to mono—b.
Another 10% possible with all-hadronic final state.



Unitarity

Bounds on M, still low - what do these constraints mean?
(Shoemaker and Vecchi; Fox, Harnik, Primulando, Yu):
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b-production seems safe, for top production it depends...



Example: neutral scalar mediator

e Interactions through a mediator of mass M, can go through a

resonance:
my =10 GeV, 8 TeV LHC
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e Other constraints can also apply depending on the model.

o |f the scalar is the Higgs, the constraints on Higgs invisible
decay - Br(H — xx) - are already stronger.



Conclusions

e Monojets searches useful to study DM-SM interactions
e For scalar operators, final states are b enriched. “Mono-b"
gives significant improvement in bounds.
e Top production even more important: direct t¢ + EJ'"*® search
e Direct probe of couplings to third generation
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Events (normalized)

Top kinematics
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Top kinematics

Compared to tt or stop pair production, in this case each particle
carries off about ~ 1/4 of the energy in roughly uncorrelated
directions — large E755,
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Loops

FIG. 1. Typical tree-level (left) and loop-level (right) diagrams leading to monojet events. The black squares denote insertions
of four-fermion operators.

Haisch, Kahlhoefer, Unwin: M, limit raised to 150 GeV.



Scalar operator constraints

¢ Recent paper by Bhattacherjee et al. [1212.5013], “Model
Independent Analysis of Interactions between Dark Matter
and Various Quarks":
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e Kamenik and Zupan 2011 - “monotop” from MFV and dark
matter



