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I. Do we need alternatives to Cold Dark Matter? 

II. Halo models & Direct Detection

and



Opening statements 

• Motivated by astrophysical issues there has been recent renewed 
interest in going beyond collision-less CDM models

• Non-WIMP dark matter models have been developed that predict/
explain deviations from standard CDM: self-interacting (e.f. Feng, et al. 

2010; Loeb & Weiner 2011; van den Aarssen 2012; Tulin, Yu, Zurek 2013), or warm 
DM

• Are the astrophysical issues due to new dark matter physics, 
incomplete CDM theory, or limits of modern observations? 



Predictions of the standard Cold Dark Matter model

2. Abundance of ‘sub-structure’ 
(sub-halos) in galaxies

1. Density profiles rise towards the centers of galaxies

Navarro-Frenk-White (NFW), 
Einasto model

Most of mass contained in highest-
mass sub-halos

S
u

b
h

a
lo

 M
a
ss

 F
u

n
ct

io
n

Mass[Solar mass]

h�annvi ' 3⇥ 10�26 cm3 s�1 (1)

⇢(r) =
⇢s

(r/rs)(1 + r/rs)2
(2)

1

Sub-halos comprise few percent of 
total halo mass

Universal for all halo masses

Springel et al 2008



Problems with the standard Cold Dark Matter model

2. ‘Missing satellites problem’:
Simulations have more dark matter subhalos than there are 
observed dwarf satellite galaxies

Earilest papers: Klypin et al. 1999; Moore et al. 1999

1. Density of dark matter halos: 
Faint, dark matter-dominated galaxies appear less dense 
than predicted in simulations 

General arguments: Kleyna et al. MNRAS 2003, 2004; Goerdt et al. 
APJ2006;  de Blok et al. AJ 2008, Oh et al. ApJ 2011
Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 
2011; Angello & Evans APJ 2012



Solutions to the issues in Cold Dark Matter

2. The data is wrong (or interpretation incomplete)
i) Measuring dark matter density profiles of galaxies is difficult 
ii) Counting satellites

a) Many more faint satellites around the Milky Way
b) Milky Way is an outlier  
[Liu et al. 2010, Tollerud et al. 2011, Guo et al. 2011, Strigari & Wechsler ApJ 2012]

 

1. The theory is wrong
i) Not enough physics in theory/simulations 

[Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato 
MRNAS 2012; Brooks et al. ApJ 2012]

ii) Cosmology/dark matter is wrong 



Basic expectations

• Self-interacting dark matter

- Halos expected to be more 
spherical, cored central density

• Warm dark matter

- Halos form at later epochs in the 
Universe
- Simulations show Einasto like 
profiles, with reduced concentrations 
(Lovell et al. 2011) 

6 M. Vogelsberger et al.

Figure 3. Density projections of the Aq-A halo for the different DM models of Table 1 (RefP0-3). The projection cube has a side length of 270 kpc. Clearly,
the disfavoured RefP1 model with a large constant cross section produces a very different density distribution with a spherical core in the centre, contrary to
the elliptical and cuspy CDM halo. Also, substructures are less dense and more spherical in this simulation. The vdSIDM models RefP2 and RefP3 on the
other hand can hardly be distinguished from the CDM case (RefP0).

for the different models. whereas the right panel shows the mean
free path � = (⇢ h�

T

/m

�

i)�1 as a function of radius for the SIDM
models. The dotted, dashed and solid lines show different levels
of resolution, characterised by a particle mass m

p

and a Plummer
equivalent gravitational softening length ✏: Aq-A-5 (m

p

= 3.143⇥
106 M�, ✏ = 684.9 pc), Aq-A-4 (m

p

= 3.929 ⇥ 105 M�, ✏ =
342.5 pc) and Aq-A-3 (m

p

= 4.911⇥104 M�, ✏ = 120.5 pc). The
runs show good convergence for radii larger than 2.8✏ indicated by
the vertical lines.

In the figure we see that RefP1 develops a large core reach-
ing the solar circle (⇠ 7 kpc). This is because the cross section
has no velocity dependence in this case and the particle scattering

works at full strength irrespective of (sub)halo mass. Although this
case is ruled out by current astrophysical constraints (see Section
2.1), it serves as a reference for the effect of a large scattering cross
section at the scales of MW-like haloes in a full cosmological sim-
ulation. On the contrary, RefP2 and RefP3 result in a main halo
whose density profile follows very closely the one from the CDM
prediction of RefP0 down to 1 kpc from the centre. At smaller radii,
where the typical particle velocities are smaller, self-interaction is
large enough to produce a core. The mean free path radial profile
clearly illustrates the radius where collisions are more important
for the different SIDM models, which is around the core radius. It
also highlights the difference between the RefP2 and RefP3 mod-

© 2012 RAS, MNRAS 000, 1–14

Vogelsberger et al 

See also Rocha et al 2013

• CDM, and non-CDM models 
going a way towards providing 
more robust, testable predictions



Kinematics of dwarf spheroidals 



Dark matter in satellite galaxies (dwarf spheroidals)
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✦ Modeled as single stellar population, range 
of dark matter density profiles allowed

Walker et al. 2007

✦ New orbit-based approaches [Breddels et al 
2012, Jardel and Gebhardt 2012, 2013]

✦ Standard modeling assumes spherical 
symmetry but not isotropy [e.g. Strigari et al 
2008, Lokas 2009, Walker et al 2009]

✦ Some corrections for non-spherical 
potentials [Hayashi, Chiba 2012, Kowalczyk et al. 2013] 



CDM-based models of dwarf spheroidals

✦ Full photometric and 
kinematic parameter space is 
very degenerate. 

Radius [arcmin]
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.
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Density Velocity dispersion

✦ Are the issues with CDM 
now solved?

✦ Combine jeans-based 
modeling with method of 
isotropic distribution 
functions [Strigari, Frenk, White 
MNRAS 2010]

✦ CDM-based NFW models 
fit all dwarf spheroidals



Multiple populations in Sculptor dwarf spheroidal

Kinematic status and mass content of the Sculptor dSph 3

FIG. 2.— Number surface density profile of RGB stars in Scl from
ESO/WFI photometry (squares with error-bars) overlaid to the best-fitting
two component model (solid line) given by the sum of a Sersic (dotted line)
and Plummer (dashed line) profiles. These are obtained from the rescaled
profiles that best fit, respectively, the distribution of RHB and BHB stars
(diamonds and asterisks with error-bars, respectively) in Scl. The Galactic
stellar contamination has been subtracted from each point.
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NMW and N are the expected number of MW and Scl RGB
stars in a distance bin (NT = NMW+N ). fMW is the velocity
distribution of MW stars, which we assume does not change
across the face of Scl, and is derived from the Besançon model
(Robin et al. 2003) selecting stars along the l.o.s. and with
magnitudes and colors similar to the Scl RGB stars. We as-
sume that the Scl velocity distribution is a Gaussian whose
peak velocity v and dispersion σ (the quantities we want to de-
rive) are allowed to vary with projected radius. We derive the
normalization factors,NMW/NT andN/NT directly from the
observed RGB surface density profile and relative foreground
density. To estimate the fraction of MW interlopers in the MR
and MP sub-samples we simply count how many stars with
velocities < vsys − 3σ (i.e. the non-membership region more
populated by foreground stars) are classified as MR and as
MP on the basis of their CaT derived [Fe/H] value. The like-
lihood of observing a set of velocities vi with i = 1, ..., N is
L(v1, ..., vN | v, σ) =

∏N
i=1 P (vi). We maximize the likeli-

hood function in each distance bin and find the corresponding
best-fitting v(R) and σ(R). The errors are determined from
the intervals corresponding to 68.3% probability.
The kinematics of the Scl MR andMPRGB stars are clearly

different (Figure 3a,b): the l.o.s. velocity dispersion profile
of MR stars declines from ∼9 km s−1 in the center to ∼2
km s−1 at projected radius R = 0.5 deg, while MP stars are
kinematically hotter and exhibit a constant or mildly declining
velocity dispersion profile.

4.2. Predicted Velocity Dispersion Profile
The l.o.s. velocity dispersion predicted by the Jeans equa-

tion for a spherical system in absence of net-streaming mo-

FIG. 3.— l.o.s. velocity dispersion profile (squares with errorbars), from
rotation-subtracted GSR velocities, for the MR (a), MP (b) and all (c) RGB
stars in Scl. The lines show the best-fitting pseudo-isothermal sphere (solid)
and NFW model (dashed) in the hypothesis of β = βOM. Panel c) shows
that the best-fitting pseudo-isothermal sphere with β = βOM (solid) and the
NFW model with β =const (dashed) are statistically indistinguishable.

tions8 is (Binney & Mamon 1982):

σ2
los(R) =

2

Σ∗(R)
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R

ρ∗(r)σ2
r,∗ r

√
r2 − R2

(1 − β
R2
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where R is the projected radius (on the sky), r is the 3D
radius. The l.o.s. velocity dispersion depends on: the mass
surface density Σ∗(R) and mass density ρ∗(r) of the tracer,
which in our case are the MR and the MP RGB stars; the
tracer velocity anisotropy β, defined as β = 1− σ2

θ/σ2
r , which

we allow to be different for MR and MP stars; the radial ve-
locity dispersion σr,∗ for the specific component, which de-
pends on the total mass distribution (for the general solution
see Battaglia et al. 2005).
We consider two DM mass models: a pseudo-isothermal

sphere, typically cored, (see Battaglia et al. 2005), and an
NFW profile, cusped (Navarro, Frenk & White 1996). Since
the contribution of the stars to the total mass of the sys-
tem is negligible for reasonable stellar M/L ratios, we do
not consider it further. As β is unknown we explore two
hypotheses: a velocity anisotropy constant with radius, and
an Osipkov-Merritt (OM) velocity anisotropy (Osipkov 1979;
Merritt 1985). For the latter profile, the velocity anisotropy
is β = r2/(r2 + r2

a) where ra is the anisotropy radius.

4.3. Results from the Two-Components Mass Modeling
We explore a range of core radii rc for the pseudo-

isothermal sphere (rc = 0.001, 0.05, 0.1, 0.5, 1 kpc) and
a range of concentrations c for the NFW profile (c =
20, 25, 30, 35). By fixing these, each mass model has two
free parameters left: the anisotropy and the DM halo mass
(enclosed within the last measured point for the isothermal
8 We checked that the assumptions of sphericity and absence of streaming

motions have a negligible effect on the results: the observed l.o.s. velocity
dispersion profiles derived adopting circular distance bins and not subtract-
ing rotation are consistent at the 1σ level in each bin with the observed l.o.s.
velocity dispersion profile derived adopting elliptical binning and by subtract-
ing the observed rotation signal (see B07)
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Metal Rich (MR) and Metal Poor (MP) population 
[Battaglia et al 2008]



• Walker & Penarrubia (ApJ 
2011) find that multiple 
populations are inconsistent with 
an NFW profile

• Agnello & Evans (ApJ 
2012) use projected virial 
theorem to rule out NFW 
profile

A Virial Core in Sculptor 3

Figure 1. Left: Virial stripes for the two stellar populations in Sculptor in a cusped NFW potential, including the self-gravity of the stellar
populations (Υ! = 8). Purple shows the metal-rich population, blue the metal-poor population. In each stripe, the central line is the mean value
of log10(ρ0), whilst the median and outer lines follow the 1σ and 2σ deviations. Center and Right: Virial stripes for the two stellar populations
in a NFW potential with small core, without (Υ! = 0) and with (Υ! = 8) self-gravity.

ε = rc/rs rs [in kpc] rs [in kpc] rs [in kpc]
(Υ! → 0) (Υ! = 4) (Υ! = 8)

1 0.72 1.06 1.23
0.5 0.94 1.40 1.54
0.25 1.2 1.92 2.20
0.125 1.6 2.88 3.28
0.0625 2.4 4.48 4.96

Table 1
Minimum rs for two-sigma overlapping of the virial stripes.

Hence, a necessary condition for a NFW halo to support two
stellar populations with Plummer profiles is

(

σ0,r

σ0,p

)2

> 2
(

Rh,r
Rh,p

)

. (14)

This is identical to eq (22) of Amorisco & Evans (2012a),
derived under different assumptions. If, instead of Plummer
profiles, exponential laws are used to fit the surface brightness
profiles, then the numerical factor becomes 1.9 instead of 2 in
eqn (11). The analogue of eqn (13) is unchanged, so that the
necessary condition for an NFW halo to support two stellar
populations with exponential surface brightness profiles is

(

σ0,r

σ0,p

)2

> 1.9
(

Rh,r
Rh,p

)

. (15)

Using the best-fitting values provided above for Sculptor, it is
immediate to check that the NFW potential is ruled out. Note
that the constraints are simply the requirement that there is a
NFW model with rs < ∞. This is a much looser constraint
than requiring consistency with an NFW model with a con-
centration c ≈ 20, as predicted by cold dark matter theories.

3.2. The Virial Stripes
The simple results already suggest that the energetics of the

two populations are inconsistent with an NFW profile. How-
ever, it is prudent to confirm this result numerically, discard-
ing some of the simplifying assumptions made above.
Since the measured profiles come with errors, we operate

in the following manner. For each value of rs, we compute ρ0
separately for the two populations for many different photo-
metric (8) and kinematic (9) profiles. We weight each result
with the likelihood of the fit. Then, varying rs produces a
virial stripe for each population in the (ρ0, rs)-plane. If the
two stripes overlap at 2σ at a particular rs, then the model for
the potential is plausible at the 2σ level. Nothing prevents us
from including the contribution of the luminous tracers to the
potential as well. The virial equations then depend also on

the stellar mass-to-light ratio Υ!, which may be different for
the two populations. The projected potential energy Wlos has
a contributionWdm from the dark component and a correction
Wsel f from the two luminous ones. For Plummer profiles, we
have for the i−th population:

Wsel f ,i = π
2Gµ0,iRh,i

∑

j
Υ!, jµ0, jR2h, jw

(

Rh,i/Rh, j
)

, (16)

with

w(x) =
x3

[

(5x2 + 3)K(1 − x2) − (x2 + 7)E(1 − x2)
]

3(1 − x2)3
, (17)

where K,E are complete elliptic integrals and Υ!, j is the lu-
minous mass-to-light ratio of the j−th population. As the µ0, j
are given by number counts and not directly by luminosities,
a common rescaling is applied to both populations such that
the total luminosity is fixed at the observed value (taken from
table 6 in Irwin & Hatzidimitriou 1995).
The leftmost panel of Figure 1 shows the virial stripes for

the two populations in Sculptor, excluding and including the
effects of the self-gravity for the luminous component. The
two stripes never overlap at the 2σ level. This confirms the
result deduced from our simple argument in the previous sec-
tion: there is no NFW halo compatible with the kinetic ener-
gies of the two stellar components in Sculptor. The center and
rightmost panels of Figure 1 show the virial stripes when the
dark halo density is the simplest cored analogue of the NFW
halo, namely

cNFW = ρ0

(ε2 + r2/r2s )1/2(1 + r2/r2s )
. (18)

In this case, the stripes do overlap at the 2σ level provided the
core radius rc ≡ rsε is at least 150 pc, if the self-gravity of
the stellar populations is neglected. Incorporating self-gravity
causes the core radius to increase somewhat, as we see in
Table 1. This shows how the minimum rs for 2σ overlap
varies with changing Υ! for different models. The first col-
umn (Υ! → 0) stands for models in which the self-gravity of
the stars is omitted. Since both half-light radii are smaller or
equal to rs in the dark matter only case, adding self-gravity is
expected to yield larger cores, as in fact is confirmed by the
results in the Table.

4. DISCUSSION AND CONCLUSIONS
The arguments in this Letter show that the kinematics of

multiple populations in dSphs provide a substantial challenge
to the predictions of cold dark matter cosmogonies. In the
case of one of the best studied dSphs, Sculptor, there is no
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Multiple populations in Sculptor dwarf spheroidal

Mass estimators may be used to determine dark matter masses within 
half-light radii of galaxies [Walker et al. 2009, Wolf et al. 2009] 



• Construct generalized model of photometry and kinematics of dSphs

Multiple populations in Sculptor dwarf spheroidal

• NFW profiles are consistent with the multiple populations

Do the multiple stellar populations in the Sculptor dwarf spheroidal rule out cold dark matter? 3
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Figure 1. 68% c.l. and 90% c.l. contours for (ρs, rs) (left) and (M200 −Vmax) (right) from an analysis that fits to both the photometry
and the kinematics of the different populations. For both the MR and MP population, we use the velocity anisotropy profile of the form
Equation 3.
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Figure 3. Upper panels: From left to right, the photometry of the MP, MR populations, and the velocity dispersions of the populations for
the set of parameters that maximize the likelihood. In the velocity dispersion figure, the upper data and curve is for the MP population,
and the bottom data and curve is for the MR population. The parameters for these curves are given above the horizontal line in Table 1.
Lower panels: Same as upper three panels, except now assume the variable β(r) model in Equation 3. The parameters of the curves are
given below the horizontal line in Table 1. The data is from (Battaglia et al. 2008)
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Strigari, Frenk, White 2013 in prep



• Radial orbits in the outer region of the metal rich population 

• Mild cusp in the three-dimensional stellar density profile 

• Forthcoming HST observations provide astrometry < 10 km/s 
(almost the projected SIM sensitivity, e.g. Strigari et al. 2007)

Testable predictions

• Does this analysis translate to measurements of low surface 
brightness galaxies? [Simon et al. 2005, Kuzio de Naray et al. 2008, Oh 
et al. 2011]



 Counting satellites



Brighter galaxies 
[Busha et al 2009]

Where are the massive dark subhalos?

✦ Cold dark matter predicts dozens of 
‘dark’ satellites more massive than the 
dwarf spheroidals 
(‘Too big to fail problem’  Boylan-Kolchin et 

al. 2011)

Luminosity-mass mapping
Inhomogeneous Reionization and Satellites Galaxies 3

vast majority of the ∼ 2500 potential satellite galaxies; for
these low-mass halos, all star formation must happen before
zreion. With this in mind, we can define a subhalo as being a
satellite galaxy using a two parameter model: A subhalo must
grow to a threshold mass, Mt, above which HI cooling will
allow star formation, before the host halo reionizes at zreion in
order to host a satellite.
While we demonstrate the effects of varying both param-

eters in the next section, the work of Abel et al. (2002) uses
high resolution AMR simulations to model the formation of

the first stars and indicates that we anticipate Mt ≈ 106 −

107h−1M!. It is important to note that this process of hy-
drogen cooling simply defines a minimum mass of the pop-
ulation of the dark matter subhalos that could host satellite
galaxies. However, this work predicts the stars forming in
these halos to be very massive and short–lived. As such
these very first star forming halos cannot be the direct pro-
genitors of Milky Way satellites, which are observed to be
metal-enriched objects with stars presumably of masses less
than a solar mass. More relevant here are the calculations of
Wise & Abel (2008), who followed the build up of halos up
to the masses when they start cooling via Lyman-alpha from
neutral hydrogen. They included the radiative as well as the
supernova feedback from the first generation of massive stars.
The short-lived sources keep ionizing the baryonic material
in the halos they form in, as well as their surroundings. How-
ever, as they turn off, material can cool again and repopulate
the dark matter halos. So while the baryon fraction (Fig. 4 in
Wise & Abel 2008) fluctuates and decreases at times to as lit-
tle as 10%, star formation can continue as long as no sustained
external UV flux sterilizes the halo. The latter case severely
limits star formation and has been discussed many time in the
literature (e.g., Babul & Rees 1992; Thoul & Weinberg 1996;
Kepner et al. 1999; Dijkstra et al. 2004). It seems clear then
from the limited guidance we have from numerical simula-
tions that most Milky Way satellite halo progenitors experi-
encedmost of their star formation before they are permanently
ionized.
Once we have identified satellite galaxies in the simula-

tion, we must assign magnitudes to them in order to make
direct comparisons with observations and to account for ob-
servational completeness effects. This is done using two
methods. First, we use a halo abundance matching method
(Kravtsov et al. 2004a; Blanton et al. 2008). Here, luminosi-
ties are assigned to halos by assuming a one-to-one corre-
spondence between n(< MV ), the observed number density
of galaxies brighter than Mv, with n(> vmax), the number
density of simulated halos with maximum circular veloci-
ties larger than vmax. For the distribution of magnitudes, we
use the double-Schechter fit of Blanton et al. (2005) for low
luminosity SDSS galaxies in the g− and r−bands down to
Mr = −12.375. The vmax values are taken from the halo catalog
of a 160 Mpc/h simulation complete down to vmax ≈ 90km/s.
In order to extrapolate this to lower circular velocities, we
calculate a power-law fit to the low end of the dn/dvmax func-
tion. The resulting correspondence is shown in Figure 1 for
the r−, g−, andV−bands (red, green, and black curves). TheV
band magnitudes are calculated using the transformationV =
g − 0.55(g− r) − 0.03 from Smith et al. (2002). This method
implicitly assumes that all galaxies have average color. Since
the data from Blanton et al. (2005) is not deep enough to map
onto the dwarf galaxy distribution, we use a power law to ex-
trapolate the MV (vmax) relation to lower magnitudes. For the
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Vmax
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M
ag

FIG. 1.— The relationship between magnitude and vmax for the r−, g−, and
V− bands using abundance matching (solid red, green and black lines). The
dashed lines show power law fits to the low-luminosity end.

V−band, we get

MV −5log(h) = 18.2−2.5log

[

( vmax

1km/s

)7.1
]

. (1)

When selecting the appropriate vmax for assigning a luminos-
ity, we follow the method of Conroy et al. (2006) and choose
the peak vmax over the trajectory of the subhalo for subhalos

that eventually cross the 105K post-reionization star forming
threshold. For subhalos that never reach this threshold, we use
the value of vmax at zreion. In both cases, this then corresponds
roughly to the mass the halo had at the redshift they stopped
rapidly forming stars.
The appeal of this method is that we are able to ignore

much of the poorly understood (and poorly simulated) physics
of galaxy formation using a statistical method that has been
shown to, on average, reproduce a wide variety of observ-
able properties for moremassive galaxies (Conroy et al. 2006;
Conroy & Wechsler 2009), as well as some properties of
dwarf galaxies down to vmax ∼ 50km/s (Blanton et al. 2008).
It is still unclear how this method will fare at lower masses;
it must break down for small halos once they no longer host
one galaxy on average. If this transition is sharp, however,
it may be a reasonable approximation for most of the mass
range where halos host galaxies.
As a second approach for assigning magnitudes, we use a

toy model to predict the star formation rate and stellar mass
of a satellite combined with the stellar population synthesis
(SPS) code of Bruzual & Charlot (2003)3. Here, we again as-
sume that star formation begins when the satellite first crosses
the mass threshold, Mt, and ends at the reionization time,
zreion. During this period, the star formation rate is set by the
dark matter mass of the subhalo,

SFR =

{

ε
(

fcoldgas
MDM

1 M!

)α

ifMDM >Mt, z> zreion

0 otherwise
(2)

where fcoldgas is the fraction of cold gas in the halo, and
α and ε are free parameters. This is similar to model 1B
of Koposov et al. (2009), with a couple of key differences.
First, we impose a hard truncation of star formation at the
epoch of reionization, something they only consider using

3 http://www.cida.ve/ bruzual/bc2003
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Dwarf spheroidals around other ‘Milky Ways’

✦ Going fainter difficult because 
unreliable distances to 
satellites 

✦ However it is the most 
important regime for the 
satellite abundance issue

Faintest satellites in SDSS

•Very few systems with spectra 
for Fornax-like satellites

•About 1,000 systems with 
photometric redshifts for Fornax-
like satellites 

✦ Can only use bright, nearby 
‘Milky Ways’

• About 5% of ‘Milky Ways’ have 
‘Magellanic Clouds’ [Liu et al. 2010, Lares 
et al. 2011; James & Ivory 2011; Tollerud et al. 
2011; Guo et al. 2011; Robotham et al. 2012]



Satellites of other ‘Milky Ways’

Cosmic Abundance of Classical Satellites
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities

Strigari & Wechsler ApJ  2012
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities
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• Down to limits of modern surveys, 
Milky Way is ‘normal’ 
[Strigari & Wechsler ApJ 2012]

• Significant improvement very soon 
with new larger scale surveys (GAMA, 
DES, LSST...)

• Is the solution to satellites issue 
likely due to incomplete theory?



Galactic halo models and low mass WIMPs



About WIMP Velocity distribution

• Experiments and interpretations used the ``standard halo 
model” (Lewin & Smith, etc)

• Two issues with this assumption:

1. Does not analytically correspond to an NFW/Einsto profile

2. Several dark matter-only simulations find different distributions

• Differences are very significant for interpretation of low mass 
WIMP results

• To extract mass and cross section, must propertly marginalize 
over Galactic halo model parameters (e.g. Pato, LS, Trotta, Bertone 2013)



Simulation perspective

• Attempt to model baryonic + dark matter physics (Ling et al. JCAP 2009)

• Simulate small number of halos with very high resolution: 
1 billion particles per MW halo 
(Vogelsberger et al 2009, Kuhlen et al. 2010)

• Scatter in VDF at the Solar radius measurable

• Limited halo-to-halo variance 

• ‘Stack’ larger number of halos with lower resolution: ~10,000 
particles per halo (Mao et al. ApJ 2013)

• Difficult to determine scatter within halo

• Better estimate of halo-to-halo variance



Results from simulations
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Results from simulations

• Over a range of halo mass (1012 - 1014 Solar mass) VDF is a 
function of two-parameters (Mao et al. 2013 ApJ)

Draft version April 11, 2013
Preprint typeset using LATEX style emulateapj v. 12/16/11

IMPLICATIONS OF HALO-TO-HALO SCATTER IN THE VELOCITY DISTRIBUTION OF DARK MATTER

Yao-Yuan Mao, Louis E. Strigari, and Risa H. Wechsler
Kavli Institute for Particle Astrophysics and Cosmology & Physics Department, Stanford University, Stanford, CA 94305 and

SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
Draft version April 11, 2013

ABSTRACT

We investigate the scatter of the velocity distribution function (VDF) of halos in cosmological simula-
tions and its implications on the direct detection experiments. With the empirical model introduced
in Mao et al. (2013), we demonstrate that the VDF should be described by at least two parameters,
one of which is directly related to the radial position of VDF being measured, and the other describes
a scatter from an unknown source. We show how this scatter will potentially impact the direct de-
tection rate calculation, especially for low WIMP masses, even for a given radial position of our solar
system with respect to the scale radius of the scale radius of the Milky Way.
Keywords: dark matter — galaxy: halo

1. INTRODUCTION

[Some introduction in the experiments context.]
In our previous work (Mao et al. 2013, hereafter Pa-

per I) we proposed a new empirical model for fitting the
VDF, motivated by cosmological simulations. The model
depends on two parameters (v0, p) and its explicitly form
is

f(|v|) =
{

A exp(−|v|/v0)
(
v2esc − |v|2

)p
, 0 ≤ |v| ≤ vesc

0, otherwise,
(1)

In Paper I we also showed that the parameters mainly
depend on the quantity r/rs, the radial position where
the VDF is measured, normalized by the scaled radius
of the density profile of the halo. We also discussed the
origin of this empirical model and also how this model
may impact the detection rate calculation if the scale
radius is unknown. In Figure 4 of Paper I one can see
there is some degeneracy between these two parameters
for a given r/rs. In this follow-up paper, we will address
this degeneracy and how it may impact the detection rate
calculation even for a given r/rs.

2. THE DISTRIBUTION OF THE VDF MODEL
PARAMETERS

In Paper I we noted there is a clear relation between the
two VDF parameters v0 and p for a given r/rs. One then
would ask whether there is some quantity X(v0, p) which
would remain constant for a fixed r/rs. We find this
quantity to be the ratio of the root-mean-square velocity
to the escape velocity, defined as

vrms

vesc
≡ 1

vesc

[∫ vesc

0
dv v4f(v)

]1/2
. (2)

In Figure 1 we show the value of vrms/vesc as a function of
(v0/vesc, p), and one can see that the constant-vrms/vesc
lines basically follow the relation between v0 and p for a
fixed r/rs. Neverthelesss, this is not a surprising result
because the vrms/vesc is physically the ratio of the average
energy to the escape energy, which is directly related to
the relative position in the gravitational potential.

Figure 1. The contour shows the value of vrms/vesc as a function
of (v0/vesc, p), from the VDF model of Eq. 1.

Given that vrms/vesc is determined by r/rs, in which
the uncertainty was claimed to be the most important
source of scatter of VDF in Paper I, does one still need
two parameters to describe the VDF instead of one (as
in the Standard Halo Model)? The answer is yes. In
Figure 2 we show the difference between two VDFs who
give exactly the same value of vrms/vesc, one can see there
is still non-negligible difference between these two VDFs.
Unfortunately, there is no explicit expression of this

”another degree of freedom” of the VDF [coin a name
for it?]. Nevertheless, with cosmological simulations, we
find the halo-to-halo scatter in this degree of freedom
is significant, as shown in Figure 3 and the Figure 4 of
Paper IẆe also find no correlation between this degree of
freedom with any interesting physical quantities [maybe
another plot?], and thus could not put a constraint on
the possible region of the parameter space.

3. IMPLICATIONS FOR DIRECT DETECTION

Although we have little understanding on this degree
of freedom of the VDF, we can still estimate its impact
on the direct detection rate calculation. In Figure 4 we
show the relative event rate as a function of the VDF pa-
rameter p, with corresponding v0 chosen to give a fixed
value of vrms/vesc. We can see that for the CDMS de-

• Note: power law index ‘p’ is not the asymptotic slope, defined as 

Note: r/rs is equivalent to specifying rms velocity (Mao et al 2013 in prep)

4 Mao et al.

Figure 3. Distribution of the best-fit parameters, v0 and p, intro-
duced in Eq. (1), describing the VDFs at different values of r/rs:
0.15 (blue), 0.3 (red), 0.6 (green), 1.2 (magenta). Each dot repre-
sents one halo from the Rhapsody simulations. The cross symbols
show the best-fit parameters to isotropic analytic VDFs obtained
from Eddington’s formula at corresponding radii. The typical un-
certainty of the fit is shown in the lower left corner. The lower right
inset shows the linear relation between v0/vesc and log(r/rs).

Figure 4. Ratio of detection rate predicted by Eq. (1) with pa-
rameters obtained from the Rhapsody simulation, for different
r/rs: 0.15 (blue), 0.3 (red), 0.6 (green), to that of the SHM with
conventional parameters. Vertical dotted lines show vmin for dif-
ferent detectors (Bernabei et al. 2008; Ahmed et al. 2010; Aalseth
et al. 2011; Angloher et al. 2012; Aprile et al. 2011) (nucleus,
threshold energy), assuming a WIMP mass of 10 GeV. The error
bars show the 68% halo-to-halo scatter, and those with wider caps
include the scatter in different directions. The x-axis is slightly
offset for clarity.

the inset of Fig. 3. This result is robust for halos with
different masses, shapes, and formation histories.
With Eq. (4) one can calculate the event rate given

VDF and vmin. We calculated this rate for each halo
using the best-fit exponential model of the VDF, for dif-
ferent vmin and different r/rs. The results are shown in
Fig. 4, where we divided the rate by the rate calculated
from the SHM with conventional parameters v0 = 220
km/s and vesc = 544 km/s for comparison.
The rate as a function of vmin behaves very differently

for different r/rs as shown in Fig. 4. For low values of
r/rs, the change in detection rates between experiments
can be much larger than the predictions of the SHM, e.g.,
the ratio between the rates of CoGeNT (Aalseth et al.
2011) to DAMA-I (Bernabei et al. 2008) is three times
larger in our model than in the SHM. This clearly mo-
tivates efforts to better constrain the scale radius of the

MW: comparing the scatter coming from measurements
of VDF with the intrinsic physical differences among ha-
los, the uncertainty on r/rs appears to be the dominant
contribution to the uncertainty in event rates, especially
for smaller vmin.

5. DISCUSSION AND CONCLUSION

We demonstrated above that there exists a similarity
in VDFs for a wide range of simulated DM halos; Eq. (1)
provides a good description of this similarity. A possible
explanation of the origin of Eq. (1) is the anisotropy in
velocity space. If a 3-dimensional random vector has a
multivariate normal distribution, its norm (modulus) will
follow the Maxwell–Boltzmann distribution if and only if
the covariance matrix (anisotropy tensor) is proportional
to the identity matrix. If instead the eigenvalues of the
covariance matrix are non-degenerate and differ by or-
der unity, the norm of the random vector would have a
distribution which resembles our Eq. (1) (Bjornson et al.
2009). Indeed, simulations indicate that the velocity vec-
tors of DM particles are distributed as a multivariate nor-
mal (Green 2012; Helmi et al. 2003; Vogelsberger et al.
2009; Abel et al. 2011), and the ratios of the eigenvalues
are ∼ 0.5− 0.8 (Wu et al. 2012).
When deducing the direct detection event rate from

cosmological simulations, the primary sources of uncer-
tainty arise from: (i) finite particle sampling of the VDF,
(ii) intrinsic scatter from physical processes that affect
the VDF during the halo formation process (i.e. the halo-
to-halo scatter), (iii) the quality of the fit and the validity
of a smooth model, (iv) the observational constraint on
r/rs for the MW, (v) the variation of the VDFs in var-
ious directions at a fixed radius, and (vi) the impact of
baryons.
An important outcome of our analysis is that at present

the scatter from (iv) is significantly larger than the cor-
responding scatter due to each of (i), (ii), and (iii), com-
bined, by more than two orders of magnitude. This is
particularly important given that the observational con-
straint on the scale radius suggests the concentration
c = rvir/rs is 10 − 20 (Klypin et al. 2002; Deason et al.
2012), which corresponds to r!/rs ∼ 0.15 − 0.6 (Xue
et al. 2008; Gnedin et al. 2010; Brown et al. 2010; Busha
et al. 2011). Thus, although the distance from the Earth
to the Galactic center is well known (Ghez et al. 2008;
Gillessen et al. 2009), we find that the largest current
theoretical uncertainty on the VDF is the uncertainty in
r/rs.
Our determination of the VDF represents an average

over a spherical shell. In reality, spherical asymmetry
and substructures will affect the VDF and result in ad-
ditional scatter along different directions. In the Rhap-
sody simulations, if we divide the spherical shell into
several regions while maintaining enough particles (of the
order 1000) in each analysis region, we find that this di-
rectional scatter is comparable to the halo-to-halo scat-
ter, and that the combined scatter will be 10−40% larger
than only the halo-to-halo scatter, as illustrated in Fig. 4.
Similar scatter is also seen in the Aquarius MW simula-
tions (Vogelsberger et al. 2009). This directional scatter
will grow at larger radii because it is a consequence of
substructures, tidal effects, and streams. At present, we
do not have a robust way to relate this scatter to di-
rect observables, and in practice this directional scatter

• For the MW, r/rs ~ 0.3
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analytically intractable and must be obtained by solving
(6) numerically. This is the case for most combinations
of (↵, �) in (4); as a result, there is no general closed-
form analytic solution for the velocity distribution func-
tion that corresponds to double power-law density mod-
els. Fortunately, it is still possible to assume an ansatz
for f(v) that reproduces the numerical solution of the
Eddington formula for double power-law densities. The
possibilities for such an ansatz are limited if one assumes
that the dark matter halo is in equilibrium.

The high velocity tail of the local dark matter distribu-
tion function arising from equilibrated, double power-law
models is in conflict with the Standard Halo Model and
its variants. Consider the following generalization of the
Standard Halo Model as an ansatz

f(E) / (eE/E0 � 1)k⇥(E), (7)

where k is the power-law index of the distribution and
describes the behavior near the escape velocity. The ben-
efit of this ansatz is that it satisfies the Jeans theorem for
an equilibrated system and goes continuously to zero at
the escape velocity.

The power-law index is defined as

k = lim
E!0+

k(E), (8)

with

k(E) ⌘ E
f(E)

df(E)

dE . (9)

For double-power density profiles of the form in (4), the
power-law index can be evaluated analytically. In this
case, the second term of the Eddington formula is negli-
gible. Expanding the density, potential, and the distri-
bution function in (6) around small E gives a power-law
index

k = � � 3

2
(10)

for � > 3 [27]. As � ! 3, k(E) does not approach a simple
power-law and the approximations that lead to (10) break
down [14]. Sec. III fits the numerical solutions to the
parameters for the ansatz velocity distribution function
in (1). As � ! 3, the best fits for k tend to be k '
2.0, slightly larger than (10). Earlier studies from galaxy
formation via violent relaxation motivated k = 1.5 [28].

It is remarkable that k takes such a general and simple
form. The index is determined almost exclusively by the
outer slope of the density distribution; all terms that de-
pend on ↵ vanish in the low energy limit. The outer slope
controls the behavior of k because the dark matter parti-
cles with the highest velocities are those with the small-
est binding energies. These particles will be in highly
energetic orbits about the halo, and will be concentrated
at large radii, far from the core. Density distributions
with larger outer slopes have fewer particles orbiting at
large radii, which means that the low-energy component

of f(E) is suppressed. A large value of k precisely cap-
tures this behavior.

The distribution function for binding energies can be
rewritten in terms of velocities using the relation in (3)
to get (1). The velocity distribution ansatz in (1) is well-
described by a Gaussian peaked near v0 for v ⌧ vesc. As
v ! vesc, the distribution function approaches

f(v) ! (vesc � v)k. (11)

Cosmological N-body simulations indicate � ⇠ 3 � 5 [1,
29], which means that the velocity distribution falls o↵
near the escape velocity to the power k = [1.5, 3.5]. A
more detailed comparison with cosmological simulations
follows in Sec. III.

The Standard Halo Model and the King model provide
a useful comparison to the distribution in (7) and they
are defined, respectively, as

fSHM(E) = N(E0)e
E/E0⇥(E)

fKing(E) = N(E0)(e
E/E0 � 1)⇥(E). (12)

These distributions are frequently used for direct dark
matter detection predictions because they make the cal-
culations tractable. In addition, they satisfy Jeans theo-
rem under the assumption of isotropy and spherical sym-
metry. However, they do not correspond to NFW-like
density models, especially near the high-velocity tails of
the distributions. In particular, the SHM behaves near
the tail as k ! 0, and the King model has k = 1. Conse-
quently, these velocity distribution functions over-predict
the number of particles in the tail of the distribution.

The Tsallis distribution is another model for the veloc-
ity distribution that has been recently discussed in the
literature, and is defined as

fTsallis(v) /
 

1 � (1 � q)
v

2

v

2
0

!q/(1�q)

. (13)

The Tsallis distribution predicts that the escape velocity
is given by v

2
esc = v

2
0/(1 � q) and k = q/(1 � q), where

the distribution in (1) sets these three parameters inde-
pendently. Hansen et al. [30] show there is a correlation
between the parameter q and the local density slope, im-
plying that q varies with radius if the density slope is
not the same at all radii. A disadvantage of this model,
however, is that does not satisfy the Jeans theorem for
spherical and isotropic systems if the circular velocity, v0,
is held constant. This violation of Jeans theorem is also
true for the generalized Maxwellian distribution, which
has been used to model the radial and tangential compo-
nents of the velocity distribution [9].

The formalism and models in this section only apply
to the spherically-averaged velocity distribution, and do
not capture any physics pertaining to steams, subhalos,
or any other structure in the phase space distribution.
Though streams are unlikely to a↵ect the overall velocity
distribution because their densities are less than ⇠ 0.1%



Minimizing impact of simulation scatter

• Related to previous studies minimizing impact of halo velocity 
distribution (Fox et al 2011, Gondolo & Gelmini 2012) 

• For a given r/rs, WIMP mass, and detector, determine the threshold 
energy at which scatter in the velocity distribution is minimized

• E.g. for 8 GeV WIMP is Si, corresponding threshold is 4 keV

• E.g. for 8 GeV WIMP is Xe, corresponding threshold is 1 keV



Neutrinos revisited 

• For low mass WIMPs, must now 
start to account for Solar 
neutrinos

• In a detector, 8B Solar neutrino 
spectrum corresponds to a WIMP 
mass and cross section

• Likelihood analysis determines 
how to extract WIMP spectrum 
from Solar, Atmospheric spectrum 
(Strigari 2009)
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2.3. Event Rates

The differential event rate at a fixed recoil kinetic energy is

dR(T )

dT
=
∫

∞

Emin

dN

dEν

dσ(Eν , T )

dT
dEν , (3)

where dN/dEν is the neutrino flux spectrum and Emin =
√

MT/2 is the minimum

neutrino energy for a given recoil energy as dictated by the kinematics. Figure 2

shows the event rate recoil spectrum for six different nuclear targets. For all targets

the naturally-occurring abundances are assumed. For both the diffuse supernova and

atmospheric event rates, the sum of all contributing neutrino flavors are shown. In

particular for the DSNB, an 8 MeV spectrum from Figure 1 is multiplied by four to
account for the production spectrum of the four νx flavors. Due to their relatively hard

spectra, the νx flavors are seen to dominate the event rate, particular at high recoil

energies; there is only about a ∼ 10% increase by including the 3 and 5 MeV spectra

at the lowest recoil energies. Each of these curves are the true, infinite resolution

spectra, i.e. they do not account for the expected finite energy resolution of detectors.

A detailed convolution with a resolution function will depend on the nuclear target and
the particular experimental environment.

Figure 3 shows the number of events above a given recoil energy for the same six

nuclear targets. Most of the 8B events are confined to low recoil energies, for example

for the case of Xe there are a total of ∼ 103 events over all energies, but only ∼ 1

event per ton-yr above a threshold of 3 keV. Future Xe detectors are expected to have

thresholds in the area of ∼ 5 keV; as is seen dropping the threshold below this energy
will lead to a significantly increased 8B signal.

As an additional note, the analysis above just accounts for neutrino-nucleus

coherent scattering. In principle it would also be possible to detect these same fluxes

via neutrino-electron elastic scatterings [8]. For this channel the largest rate is to due

the solar pp reaction. For example, from pp scatterings on Xe a flat spectrum of electron

recoil events is expected at ∼ 0.1 events per ton-yr with energies up to ∼ 600 keV.

3. Implications for WIMP-Nucleon Cross Section Constraints

In the absence of backgrounds the expected upper limit on the WIMP-cross section

simply scales linearly with the detector. For example a ten times greater exposure

will imply a ten times stronger upper limit on the cross section. In the presence of

backgrounds, however, the projected limits on the cross section must be modified.
Dodelson [28] has provided a simple formalism for estimating the upper limit on the

WIMP-nucleon cross section, given a measured background rate and a fiducial detector

volume. In this formalism, the probability of observing a total of N events, given a

WIMP-nucleon cross section, σ, is

L(N |σ) ∝
∫

∞

0
dNb exp

[

−(Nb − N̄b)2

2σ2
b

]

e−µµN

N !
. (4)

Talks here by Pradler, Harnik
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Concluding remarks

• CDM has been challenged many times since it has been developed

• No clear evidence that it needs to be discarded (or totally believed 
in its current form)

• Picture should become more clear in the next few years...

Do we need alternatives to Cold Dark Matter? 

Halo models & Direct Detection

• (Carefully) interpret results from numerical simulations in the context of 
direct detection

• Now the time to start thinking about methods to include neutrinos in the 
analysis


