

Baryons and (Unusual) Light Dark Matter

David Morrissey

with

Nikita Blinov, Hooman Davoudiasl, Kris Sigurdson, Sean Tulin

arXiv:1008.2399 [hep-ph]

arXiv:1106.4320 [hep-ph]

arXiv:1206.3304 [hep-ph]

MCTP Light DM Workshop, April 17, 2013

Motivation #1: DM and Baryons

• $\Omega_{DM} \simeq 5\Omega_b$

Could this be more than an accident?

- Asymmetric DM [Nussinov '85; ..., Luty, Terning, Zurek '08;...]
 - Distinct DM χ and anti-DM $\overline{\chi}$.
 - More χ created than $\overline{\chi}$.
 - Efficient $\chi \bar{\chi}$ annihilation, no $\chi \chi$ or $\bar{\chi} \bar{\chi}$.
- This is how we get the baryon density.
 - DM asymmetry related to the baryon asymmetry?
- Naïve guess: $m_\chi \sim 5 \, m_p \sim 5 \, {
 m GeV}.$

Motivation #2: Moduli

- Many (SUSY) theories contain light scalar "moduli" fields.
 e.g. SUSY flat directions, string compactifications, ...
- Moduli masses often related to SUSY breaking:

 $m_{\varphi} \sim m_{3/2}$

Low-energy SUSY $\Rightarrow m_{3/2} \lesssim 1000 \text{ TeV}.$

• Moduli decay through higher-dimensional operators:

$$\Gamma_{\varphi} = \frac{m_{\varphi}^3}{4\pi\Lambda^2}$$

• Reheating for $m_{\varphi} \lesssim 1000 \,\text{TeV}$ is relatively late:

$$T_{RH} \simeq 200 \,\mathrm{MeV} \, \left(\frac{10}{g_*}\right)^{1/4} \left(\frac{M_{\mathrm{PI}}}{\Lambda}\right) \left(\frac{m_{\varphi}}{1000 \,\mathrm{TeV}}\right)^{3/2}$$

- DM can be produced non-thermally (*e.g.* moduli decays).
- This is too low for most baryogenesis mechanisms. Sphalerons become inactive at $T \sim 100 \,\text{GeV}$.

A Unified Approach

- Relate the baryon asymmetry to a DM asymmetry.
 - \rightarrow Asymmetric Dark Matter (ADM)

[Nussinov '85;Kaplan '90; Barr '91; ..., Luty, Terning, Zurek '08;...]

- One step further hidden antibaryons as DM.
 [Dodelson+Widrow '90; Farrar+Zaharijas '04;Kitano+Low '04;
 Agashe+Servant '04; An,Chen,Mohapatra,Zhang '09,...]
- Find a low-temperature mechanism for the asymmetry consistent with late moduli decay.

A Sample Mechanism: Hylogenesis

- Expand the SM with new hidden particles:
 - $-X_1$, X_2 heavy (TeV) Dirac fermions, B = +1
 - -Y light (GeV) Dirac fermion, B = y
 - $-\Phi$ light (GeV) complex scalar, B = -(1 + y)
- Couplings:

$$-\mathcal{L} \supset \frac{\lambda_a}{M^2} X_{L_a} U^c D^c D^c + \zeta_a^* X_a Y \Phi + (h.c.)$$

 \rightarrow "neutron portal"

Also used for BG by: Dimopoulos+Hall '87, Cline+Raby '91, Thomas '95, Kitano, Murayama, Ratz '08; Allahverdi, Dutta, Sinha '10.

- One more ingredient a new U(1)' gauge symmetry:
 - Higgsed with $m_{Z'} \sim {
 m GeV}$
 - SM fields carry no direct U(1)' charge
 - $-X_{1,2}$ are neutral
 - -Y and Φ have equal and opposite charges.
- Gauge kinetic mixing:

$$\mathcal{L} \supset -\frac{\kappa}{2} B^{\mu
u} Z'_{\mu
u}, \qquad |\kappa| \ll 1.$$

Induces a Z' coupling to the SM with strength $e Q_{em} c_W \kappa$.

Matter Production

- Three Easy Steps:
 - 1. Equal numbers of X_1 and \overline{X}_1 are produced non-thermally.
 - 2. X_1 and \overline{X}_1 decay with CP violation into udd and $Y\Phi$.
 - 3. Non-asymmetric Y and Φ annihilate into Z's.
- Leftover Y and Φ make up the dark matter.

They carry baryon number and lead to novel DM signals.

Step #1: X Production

- Equal X_1 and \overline{X}_1 densities are produced when $T \ll m_{X_1}$. e.g. reheating after moduli oscillation, inflation, ...
- This is the departure from equilibrium ingredient.
- X_1 and \overline{X}_1 have $B = \pm 1$, but there is no net B number.

Step #2: X Decay

- $X \to udd$ or $\overline{Y} \Phi^*$, $\overline{X} \to \overline{u}\overline{d}\overline{d}$ or $Y \Phi$ instantaneously.
- CP violation alters partial decay widths:

 $\Gamma(X \to 3Q) = \Gamma_{3Q} + \epsilon \Gamma_{tot}$ $\Gamma(X \to \bar{Y}\bar{\Phi}) = \Gamma_{Y\Phi} - \epsilon \Gamma_{tot}$ $\Gamma(\bar{X} \to 3\bar{Q}) = \Gamma_{3Q} - \epsilon \Gamma_{tot}$ $\Gamma(\bar{X} \to Y\Phi) = \Gamma_{Y\Phi} + \epsilon \Gamma_{tot}$

CPT requires $\Gamma(X \to all) = \Gamma(\bar{X} \to all)$.

• Asymmetries come from tree-loop interference:

$$\epsilon = \frac{\Gamma(X \to 3Q) - \Gamma(\bar{X} \to 3\bar{Q})}{\Gamma(X \to all) + \Gamma(\bar{X} \to all)}$$
$$\simeq \frac{Im(\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*)}{\pi_{X_1}^*} \frac{m_{X_1}^5}{\pi_{X_1}^5}$$

$$\frac{1}{256\pi^3 |\zeta_1|^2} \frac{1}{M^4 m_{X_2}}$$

• Final *B* Asymmetry: $\frac{n_B}{s} \simeq \epsilon \left. \frac{n_X}{s} \right|_{RH}$.

• Asymmetries split B into 3Q, $Y\Phi$.

• There is no violation of total (generalized) B number.

Step #3: Annihilation

• Quarks annihilate until only the asymmetry remains:

• Y, Φ annihilate to Z' leaving only the asymmetry:

• Very efficient for $m_{Z'} < m_{Y,\Phi}$.

• All that remains are equal and opposite densities of

3Q and $Y\Phi$ set by the decay asymmetry.

- Y and Φ are hidden antibaryons.
- We want them to be stable.
 Hidden antibaryons as dark matter?

RIUMF

Hidden Antibaryonic Dark Matter

- We have $n_Y = n_{\Phi} = n_B$.
- Both Y and Φ can be stable if:

$$|m_Y - m_{\Phi}| < (m_p + m_e) < m_Y + m_{\Phi}$$

• They provide the right DM density if:

$$(m_Y + m_{\Phi}) = m_p \left(\frac{\rho_{DM}}{\rho_B}\right) \simeq 4.5 \,\mathrm{GeV}.$$

• Possible mass ranges: 1.7 GeV $\lesssim m_{Y,\Phi} \lesssim$ 2.9 GeV. (The Z' should be even lighter than this.)

Signals of Hylogenesis

- Y and Φ together make up the dark matter. They both couple to a light Z' vector boson.
- Potential Signals:
 - Direct Z' effects in colliders, precision experiments.
 - Elastic scattering of Y and Φ off nuclei via Z'.
 - Nucleon destruction from inelastic Y/Φ scattering.
 - Monojets at colliders from *Xudd*, DM production.
- All four types of signals could be observed soon.

DM-Nucleon Inelastic Scattering

- DM now carries B = -1!
- Y or Φ can scatter inelastically off a nucleon.

• A nucleon is destroyed in this process.

$$Y/\Phi + N \to \Phi^*/\bar{Y} + M$$

- Inelastic DM scattering will mimic nucleon decay.
 → Induced Nucleon Decay (IND)
- Total event rates in a nucleon decay detector:

 $R_{decay} = \Gamma_{decay} N_{nuc}$ $R_{IND} = (\sigma v)_{IND} (\mathcal{F}_{DM}/v) N_{nuc}$

 $\mathcal{F}_{DM} = \text{local DM flux}$

• Effective IND "lifetime":

$$\tau_{eff}^{-1} = (\sigma v)_{IND} \left(\mathcal{F}_{DM} / v \right).$$

• IND rate:

$$\tau_{eff} \simeq 10^{32} \, yr \left| \frac{m_X M^2 / \lambda^* \zeta}{\text{TeV}^3} \right|^2$$

 $(\tau_{eff} = 10^{32} yr \text{ corresponds to } (\sigma v)_{IND} \simeq 10^{-39} cm^3/s)$

Nucleon decay searches use a meson momentum window.
 Meson momenta from IND are larger (for downscattering):

Decay mode	p_M^{SND}	p_M^{IND} [down]	$ au_N$ bound (×10 ³² yr)
$N \to \pi$	460	800 - 1400	$ au_p > 0.16$, $ au_n > 1.12$
$N \to K$	340	680 - 1360	$ au_p >$ 23, $ au_n >$ 1.3
$N o \eta$	310	650 - 1340	$ au_n > 1.58$

• Results for $U^c D^c S^c X$ operator:

• Shaded bands are covered by existing (SuperK) analyses.

Supersymmetry for the Light Scalar

• Our mechanism needs a light scalar, $m_{\Phi} \leq 2.9 \text{ GeV}$.

Why should it be so light?

Supersymmetry!

- New features of our implementation of supersymmetry:
 - Two Y and Φ multiplets are needed for $U(1)_x$ anomaly.
 - *R*-parity is extended to $\mathbb{Z}_4^R \subset U(1)_{B-L}$.
 - The Z' hidden vector has a gaugino superpartner.
 - Suppressed SUSY breaking keeps the dark sector lighter. e.g. AMSB with $e'/g_{SM}\sim 0.1$ [Kumar+Feng 2008]

- Most of the previous story carries over.
- New feature: $YY \leftrightarrow \Phi\Phi$ transfer reactions.

- Implications of transfer:
 - The heavier state is depopulated.
 - A wider range of Y and Φ masses give $\Omega_{DM}/\Omega_b = 5$.
 - IND rates can be suppressed for $\Delta m > m_p m_K$.
 - Transfer can prevent complete symmetric annihilation.

• Transfer effects:

• Right of the white line is excluded by CMB limits on residual symmetric annihilation. [Lin,Yu,Zurek 2011]

Summary

- Hylogenesis realizes DM as hidden antibaryons.
 Explains DM and the baryon asymmetry simultaneously.
- $\rho_{DM} \simeq 5\rho_B \Rightarrow \sum_i m_{DM_i} \simeq 5 m_p$.
- A distinctive new DM signal is Induced Nucleon Decay. $M \sim 1 \,\text{TeV}$ probed by existing nucleon decay searches.
- The scenario is also be testable at the LHC via monojets.
- A natural mass hierarchy could arise from SUSY.

Extra Slides

Light Z' Signals

[Pospelov '08; Batell, Pospelov, Ritz '09, Reece+Wang '09; Bjorken et al. '09, ...]

Fixed target experiments can improve these bounds. [Bjorken *et al.* '09, APEX '11]

DM-Nucleon Elastic Scattering

• Y and Φ can scatter elastically off nuclei via Z'.

• Cross-section per nucleon (spin-independent):

$$\sigma_0^{SI} = (5 \times 10^{-39} cm^2) \left(\frac{2Z}{A}\right)^2 \left(\frac{e'}{0.05}\right)^2 \left(\frac{\kappa}{10^{-5}}\right)^2 \left(\frac{0.1 \text{ GeV}}{m_{Z'}}\right)^4$$

IND and Stars

• DM can collect in stars and build up a large density.

- Regular DM self-annihilates and can heat up a star.
- Y and Φ DM can't self-annihilate, but can yield IND:
 - DM collects in the stellar core by elastic scattering.

- IND: $Y / \Phi + N \rightarrow \Phi^* / \bar{Y} + M$

– Φ^* annihilates with Φ , \overline{Y} annihilates with Y

- Largest effects in dense neutron stars, white dwarfs.
 Main effect is stellar heating, not nucleon destruction.
 [Kouvaris '08; Bertone+Fairbairn '08; McCullogh+Fairbairn '10; Hooper et al. '10]
- Solar bounds are weak due to evaporation ($m_{DM} \leq 2.9 \text{ GeV}$).

Collider Searches

• The operator $XU^cD^cD^c/M^2$ will produce monojets:

- Tevatron + LHC are sensitive to M ~ TeV.
 ⇒ same scale probed by nucleon decay experiments
- Analagous to monojet bounds on "ordinary" dark matter. [Bai, Fox, Harnik '10; Goodman *et al* '10; Graesser, Shoemaker, Vecchi '11].

• Slight problem: $M \sim \sqrt{\hat{s}}$ for relevant collisions.

 \Rightarrow details depend on the UV completion

- But DM/baryon production and IND do not (have to).
- Quasi-model-independent fix:

$$-\frac{1}{M^2} \rightarrow \begin{cases} \frac{1}{\hat{s} - M^2 - i\sqrt{\hat{s}} \Gamma} & (X \text{ contracts with final } q) \\ \frac{1}{\hat{t} - M^2} & (X \text{ contracts with initial } q) \end{cases}$$

 Γ = unknown mediator width

• Look at different values of Γ to estimate UV dependence.

- Tevatron (CDF) Monojet Search: jet with $p_T > 80~{
 m GeV},~|\eta| < 1.0,~\dots$
- CDF search $(1.0 fb^{-1})$ implies $\sigma < 0.66 pb$.

- LHC $j + E_T$ Search: jet with $p_T > 500 \, {\rm GeV}$, $|\eta| < 3.2$, ... [Vacavant+Hinchliffe '01]
- Sensitivity with $100 fb^{-1}$ at 14 TeV: $\sigma \leq 7 fb$.

• Monojets can also come from Z' Drell-Yan with ISR/FSR:

Could be observable at the LHC: [Bai, Fox, Harnik '10; Goodman '10]

[Bai, Fox, Harnik '10]

Gauge Kinetic Mixing

• Standard Gauge Boson Kinetic Terms:

$$(A = U(1)_{em}, \quad X = U(1)_x)$$
$$\mathcal{L} \supset -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu},$$
with $E = \partial_{\mu}A - \partial_{\mu}A - X = \partial_{\mu}X - \partial_{\mu}X$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, $X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$.

• Gauge Kinetic Mixing:

$$\mathcal{L} \supset -\frac{1}{2} \epsilon F_{\mu\nu} X^{\mu\nu}.$$

• $\epsilon \sim 10^{-4} - 10^{-2}$ from integrating out heavy states charged under both $U(1)_{em}$ and $U(1)_x$. [Holdom '86]

- Assume DM carries a $U(1)_x$ charge x_{DM} , SM states do not.
- Rotate gauge fields to get canonical kinetic terms:

$$A_{\mu} \rightarrow A_{\mu} - \epsilon X_{\mu} + \mathcal{O}(\epsilon^2)$$

 $X_{\mu} \rightarrow X_{\mu} + \mathcal{O}(\epsilon^2)$

• This induces a coupling between X_{μ} and SM states:

$$eQ A_{\mu} \bar{f} \gamma^{\mu} f \to eQ A_{\mu} \bar{f} \gamma^{\mu} f - eQ \epsilon X_{\mu} \bar{f} \gamma^{\mu} f.$$

SM- $U(1)_x$ coupling strength $= -e Q \epsilon \ll 1$ DM- $U(1)_x$ coupling strength $= g_x x_{DM} \sim 1$

• DM DOES NOT get an electric charge!

• Hylogenesis = double rainbow + double unicorn!

[www.peace-files.com]