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Getting through the awkward phase: 
keV nuclear recoil energy reconstruction in liquid xenon particle detectors grows up*

* nine going on ____
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measured quantity

XENON100, Phys. Rev. Lett. 109 181301 (2012)

incorrectly derived quantity, 
except close to the centroid 

of NR distribution

not quite
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correctly derived quantity, 
overlaid *

* both derived quantities assume the same Leff curve
I guarantee the shape of the curves, not the energies

PS, Phys. Rev. D 86 101301 (2012)

measured quantity

incorrectly derived quantity, 
except close to the centroid 

of NR distribution



U. Mich. Light Dark Matter Workshop    15-17 April, 2013P. Sorensen

August 2012

4

PS, Phys. Rev. D 86 101301(R) (2012)

based on a consistent treatment of low-energy 
fluctuations, as described in

using model: case C

JCAP 09 (2010) 033
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It isn’t clear if XENON100 agree with me or not...

Comment on “On the subtleties of searching for dark matter with liquid xenon
detectors”
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In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100’s upper limits
on spin-independent WIMP-nucleon cross sections for WIMP masses below 10GeV “may be un-
derstated by one order of magnitude or more”. Having performed a similar, though more detailed
analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these find-
ings. We point out the rationale for not considering the described e↵ect in our final analysis and
list several potential problems with his study.

PACS numbers: 95.35.+d, 14.80.Ly, 29.40.-n,

Keywords: Dark Matter, WIMPs, Direct Detection, Xenon

In a recent manuscript [1], P. Sorensen examines
our results from a 225 live-days dark matter run with
XENON100 [2] and claims that the XENON100 upper
limit on WIMP-nucleon cross sections at WIMP masses
below 10GeV might be significantly stronger than our
published result. We are aware of the raised issues and
take the opportunity to comment here. While we wel-
come the author’s endorsement of our main conclusion,
namely the lack of an observed dark matter signal in this
run, we do not support his statement of one order of mag-
nitude improvement in sensitivity for low-mass WIMPs
after having performed a similar analysis prior to the
submission of our manuscript to PRL.

We agree with the argument that in principle one
might use the additional information carried by the pro-
portional light signal, S2, in order to obtain a better mea-
sure of the energy of each scattering event in our detector.
We would thus exploit not only S1, the prompt scintilla-

tion signal, but the fully available phase space. Indeed,
as shown in [3] we have used the combined S1 and S2 in-
formation to significantly improve the energy resolution
of our detector for interactions of gamma rays at various
energies and to understand its main background sources
[4]. On the other hand, as we discuss in more detail
later, we are still unable to use the information in the
S2-channel at the energies of interest to a dark matter
search, for we lack measurements of the ionization yield,
Qy, of liquid xenon for nuclear recoils of a few keV. We
also agree with the statement that low-mass WIMPs are
expected to show a di↵erent S2/S1 versus S1 distribu-
tion than the one expected from calibration data with an
241AmBe neutron source. In fact, we have studied these
e↵ects in detail, in a similar fashion as followed in the
paper by P. Sorensen: we have inferred Qy based on our
241AmBe nuclear recoil calibration data and on the mea-
sured Le↵(Enr) and have used Monte Carlo simulations to
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Late August 2012
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April 2013

OK, it seems that they do.

arXiv:1304.1427
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Back to basics: measured quantities in liquid xenon are photons and electrons
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LUX, Nucl. Instr. Meth. A 668 1 (2012)

S2 = α2 ne

S1 = α1 n𝛾

α1 ~ O(0.10) and α2 ~ O(10)

are the probability to detect each quanta

n𝛾 and ne 
are what you really want to know
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Aprile et al. 2009

Manzur et al. 2010

Electronic signal from neutral particles is quenched

Xe

PS, C.E. Dahl, Phys. Rev. D 83 063501 (2011) 

ϵ = 13.8 eV, the average energy to create a single quanta (e or 𝛾)
fn = energy dependent Lindhard prediction for signal quenching

Lindhard prediction for fn 

cas
e A

cas
e B

quenching applies to the TOTAL electronic excitation
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In liquid xenon, quenched Enr partitions into scintillation photons and electrons

PS, C.E. Dahl, Phys. Rev. D 83 063501 (2011) 

curves are fits with 𝜉 and Nex/Ni 
as free parameters

Two-step model: 
(1) Lindhard model gives quenching, fn

(2) Thomas-Imel model gives partioning (first noted by Shutt, Dahl)

electron fraction:

electron yield: = S2/(α2 Enr)

“effective” 
photon yield:

this is the “effective” 
bit, an ad-hoc 
constant with a 
value of ~0.015
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stars: PRC 81 025808 (2010)
diamond: PRC 79 045807 (2009)
squares: PRC 84 045805 (2011)

stars: PRC 81 025808 (2010)
squares/circles: PRL 97 021302 (2006)
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~ 15 photons !!

electrons / keV photons / keV * 0.015

Model compared with neutron scattering data

•k = 0.110
•4𝜉/Ni = 0.037 
•Nex/Ni = 1.00

•k = 0.166
•4𝜉/Ni = 0.032 
•Nex/Ni = 1.09

model prediction case A:

model prediction case B:

suspect threshold bias
cf. JCAP 09 (2010) 033

case A

case B



U. Mich. Light Dark Matter Workshop    15-17 April, 2013P. Sorensen

Does the model reproduce the data?
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data XENON10, Phys. Rev. Lett. 100 021303 (2008)

S1 photoelectrons
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Yes
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•Band simulation using model case A
•Method described in JCAP 09 (2010) 033
•(showing XENON10, agreement is very similar for XENON100)
•NR band width dominated by

1.Poisson fluctuations in ne and n𝛾 
2.Photomultiplier resolution

red steps: fits to data, from 
Phys. Rev. D 80 115005 (2009)

circles / trianlges: fits to simulation

simulation
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It is possible to derive self-consistent calibration curves without the model
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y = log10(S2/S1) ∝ log10(Qy/Leff)

PS, Phys. Rev. D 86 101301(R) (2012)

lets call this set of (solid) curves “case C”

by using a fancy analysis technique known as... algebra!
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Same as slide 12, but showing also 25 keV mono-energetic response
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simulation

•25 keV is far from threshold, measurements look robust
•Once Leff/Qy are known at e.g. 25 keV, values at other energies 
are constrained
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All this bears on the XENON10 S2-only analysis

XENON10, Phys. Rev. Lett. 107 051301 (2011)

robust down to a single electron

extrapolation. quoting from the paper, p2:

the extrapolation we used is none other than 
model case A from these slides
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Two questions
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•Looks reasonable (good, even) for 
high energies (roughly E>6 keV)
•Case A is conservative
•Case B is not
•Case C is not (its also not “the model”)

•Lindhard theory works very well in 
Ge, down to <1 keV, and in principle 
is agnostic across elements

Yes

Should I believe the model?

Yes / No

•Xe may behave differently than Ge, 
vis-a-vis Lindhard theory
•Lindhard theory must break down at 
some E, maybe this is higher in Xe 
compared to Ge
•Xe S2 measurements are suspect for E<6 
keV
•Xe S1 measurements are challenging 
for E<6 keV
•Everyone else is detecting DM, xenon 
(the element, not the collaboration) 
must be doing something wrong

Should I believe the model extraplation?
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How low can we reasonably push these curves?

• I don’t know (yet)
• ANY reasonable answer must also reproduce 
measured NR band (cf. slide 13)
• Xe experiments owe it to the community to 
answer this 
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Light DM looks a lot like solar 8B coherent neutrinos

dashed: DM masses 5, 6, 7 and 10 GeV
solid: 8B coherent neutrinos

(perfect resolution)

• prospect of observing 8B coherent neutrinos in 
LUX (α1 ~ 0.15) compare: α1 ~ 0.06 in XENON100

• depends on fundamental liquid xenon 
response (ne + n𝛾) to NR 

• if there is a “kinematic cutoff” at e.g. 4 keV, 
we should know from the NR band shape

LUX, case A, 1 keV cutoff

LUX, case A, 4 keV cutoff

10−1 100 101
10−2

10−1

100

101

102

103
xenon

nuclear recoil energy [keV]

ct
s/

k
eV

/
2
0
0

k
g
/
3
6
5

d
ay

s

assuming DM
σ = 4x10-45 cm2



U. Mich. Light Dark Matter Workshop    15-17 April, 2013P. Sorensen 19

XENON100 results
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simulation of a XENON100-like detector

software threshold at ~50 photons

NOTE: assumes energy calibration as in Phys. Rev. D 86 101301 (2012)

NB: apparent difference in band width is a binning artifact -- the lower dashed line is -3σ in both plots

α1 = 0.06

Closing remark
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software threshold at ~50 photons

same simulation of a XENON100-like detectorsimulation of LUX-like detector

software threshold at ~20 photons

LUX will have a factor x2+ lower photon detection threshold, period. 
•n𝛾 does not depend on energy calibration (Leff, Qy)

•probably leads to a few keV in energy threshold, relative to XENON100
•lower background rate => increased discovery potential

NOTE: assumes energy calibration as in Phys. Rev. D 86 101301 (2012)NOTE: assumes energy calibration as in Phys. Rev. D 86 101301 (2012)

α1 = 0.15 α1 = 0.06

34kg x 225d100kg x 76d

LUX advertisement
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Extra slides follow
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Non-Gaussian background mechanisms (I)
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“gamma X”

S1 S1

S2
𝛾

𝛾

XENON10, Phys. Rev. D. 80 115005 (2009)

gamma X

XENON100 quotes this mechanism in the context of their 2 events.
 I don’t buy it.

why? gamma X fraction is increasing with energy. 
So, where are all the higher energy gamma X events??
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S1

S2

𝛾

𝛾
𝛾

𝛾

this is a more plausible mechanism.

This rate could be calculated, based on 
measured S1-only rate. Has not been done..

“random coincidence”

Non-Gaussian background mechanisms (II)


