Calculation of Three-Loop Terms for the MSSM Higgs Mass

Philipp Kant

Humboldt-Universität zu Berlin, PEP

in collaboration with

R. V. Harlander, L. Mihaila, M. Steinhauser P. I. Draper, J. L. Feng, S. Profumo, D. Sanford

Higgs Mass Workshop, University of Michigan, Ann Arbor, Dec. 13, 2013

Philipp Kant Calculation of Three-Loop Terms for the MSSM Higgs Mass

Higgs Mass in the MSSM

- 2 Radiative Corrections
- 3 Leading Three-Loop Corrections
- Phenomenological Consequences

5 Conclusions

2 Radiative Corrections

3 Leading Three-Loop Corrections

Phenomenological Consequences

6 Conclusions

Higgs mass measurement at LHC

- M_h gives stringent bounds on new Physics especially for supersymmetry
- Higgs mass calculable for given superpartner masses
- exclude large regions of parameter space

keep in mind

- what are the uncertainties in the calculation?
- Higgs mass *logarithmically* sensitive to stop masses $\mathcal{O}(\text{GeV})$ change in $M_h \Leftrightarrow \mathcal{O}(\text{TeV})$ change in $m_{\tilde{t}}$
- precision calculation necessary

Higgs Sector of the MSSM

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 \left(\epsilon_{ab} H_1^a H_2^b + \epsilon_{ab} H_1^{a*} H_2^{b*}\right) + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(|H_1|^2 - |H_2|^2\right)^2 + \frac{1}{2} g_2^2 |H_1^* H_2|^2$$

spontaneous symmetry breaking

 H_1 , H_2 aquire vacuum expectation values \Rightarrow gauge bosons and fermions aquire masses.

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + m_{12}^2 \left(\epsilon_{ab} H_1^a H_2^b + \epsilon_{ab} H_1^{a*} H_2^{b*}\right) + \frac{1}{8} \left(g_1^2 + g_2^2\right) \left(|H_1|^2 - |H_2|^2\right)^2 + \frac{1}{2} g_2^2 |H_1^* H_2|^2$$

spontaneous symmetry breaking

 H_1 , H_2 aquire vacuum expectation values \Rightarrow gauge bosons and fermions aquire masses.

difference to SM: quartic terms fixed by gauge couplings M_h can be predicted!

- tree level: $M_h \leq M_Z$
- large radiative corrections depending on superpartner spectrum
- measurement and calculation of *M_h* constrain SUSY parameters

2 Radiative Corrections

3 Leading Three-Loop Corrections

Phenomenological Consequences

One-Loop

• radiative corrections from heavy particles

[Ellis,Ridolfi,Zwirner 1991; Haber,Hempfling 1991; Okada,Yamaguchi,Yanagida 1991, Brignole '92;

Chankowski, Pokorski, Rosiek 1994; Dabelstein 1995; Bagger, Matchev, Pierce, Zhang 1997]

- most important contributions: top and stop loops $\propto m_t^4 \ln \frac{m_t}{m_t}$
- one-loop shift of the order of the tree-level value
- mild dependence on external momentum p²

Two-Loop

Corrections at Two Loops • $p^2=0$ approximation: • $\alpha_t \alpha_s$ [Hempfling, Hoang '94; Heinemeyer, Hollik, Weiglein '98, '99; Espinosa, Zhang '99, Degrassi, Slavich, Zwirner '01] • α_{\star}^2 [Hempfling, Hoang '94; Brignole, Degrassi, Slavich, Zwirner '01] • $\alpha_{\rm s} \alpha_{\rm b}$ [Brignole, Degrassi, Slavich, Zwirner '02] • $\alpha_t \alpha_b, \alpha_b^2$ [Dedes, Degrassi, Slavich '03] implemented in public codes CPSuperH, FeynHiggs, softsusy, SPheno, SuSpect [Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner; Degrassi, Frank, Hahn, Heinemeyer, Hollik, Slavich, Rzehak, Weiglein; Allanach; Porod Staub: Diouadi, Kneur, Moultaka] momentum dependence, electroweak effects [Martin '02, '04] not yet implemented in public code

[Borowka, Heinrich '13]

momentum dependence in FeynHiggs

work in progress to include

[Allanach, Djouadi, Kneur, Porod, Slavich '04]

compares results from different codes

	SPS1a	SPS2	SPS4	SPS5	SPS9
SuSpect	112.1	116.8	114.1	116.1	117.5
FeynHiggs	113.8	118.3	116.1	118.5	118.3

- studies scale dependence
- projects effects of neglecting momentum from 1-loop

concludes

- remaining uncertainty: 3-5 GeV
- caveat: in 2004, focus on rather light stops ≈ 1 TeV expect larger uncertainties for heavier stops

 remaining uncertainty: ≈ 3 - 5 GeV rising with superpartner masses
 ATLAS 125.5 ± 0.2^{+0.5}_{-0.6} GeV CMS 125.7 ± 0.3 ± 0.3 GeV theory has to do better

Results Beyond Two Loops

- three-loop LL and NLL through renormalisation group [Martin '07]
- calculation of the $\alpha_t \alpha_s^2$ terms

- [Harlander, PK, Mihaila, Steinhauser '08 & '10]
- special cases from vacuum stability

[Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice, Isidori, Strumia '12]

2 Radiative Corrections

3 Leading Three-Loop Corrections

Phenomenological Consequences

6 Conclusions

Leading Terms at Three Loops

- corrections from top and stops
- external momentum zero
- 3 loops, no legs
- > 30.000 diagrams
- needs regularisation consistent with SUSY
 - Dimensional Reduction
- many masses:

Dimensional Regularisation (DREG)

• regulate divergencies via a shift in the dimension

 $4 \rightarrow D = 4 - 2\varepsilon$

Supersymmetry

- connects bosonic and fermionic degrees of freedom
- numbers of degrees of freedom has to match
- spoiled by DREG (vector fields)

What to do?

- either restore Ward identities by finite counterterms
- or use Dimensional Reduction (DRED)

[Siegel '84]

change integration measure, leave the fields as they are

- compactify spacetime such that fields only depend on *D* components of spacetime
- partial derivatives and momenta are restricted to D dimensions
- vector fields are left "intact" introduce ε-Skalars to restore vector fields

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^2 + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^b + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^2 + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^b + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

DRED: $A_4^{\mu} \to A_D^{\mu} \oplus A_{2\epsilon}^{\mu}, \partial_4^{\mu} \to \partial_D^{\mu} \oplus 0_{2\epsilon}^{\mu}$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$\mathsf{DRED:} A_{4}^{\mu} \to A_{D}^{\mu} \oplus A_{2\epsilon}^{\mu}, \partial_{4}^{\mu} \to \partial_{D}^{\mu} \oplus 0_{2\epsilon}^{\mu}$$

$$\Rightarrow \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$+ \frac{1}{2}\left(D_{\mu}^{ab}A_{\nu}^{b}\right)^{2} - g\bar{\psi}^{\alpha}\gamma_{\mu}R_{\alpha\beta}^{a}\psi^{\beta}A_{\mu}^{a} - \frac{1}{4}g^{2}f^{abc}f^{ade}A_{\mu}^{b}A_{\nu}^{c}A_{\mu}^{d}A_{\nu}^{e}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$\text{DRED:} A_{4}^{\mu} \to A_{D}^{\mu} \oplus A_{2\epsilon}^{\mu}, \partial_{4}^{\mu} \to \partial_{D}^{\mu} \oplus 0_{2\epsilon}^{\mu}$$

$$\Rightarrow \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$\left[+\frac{1}{2}\left(D_{\mu}^{ab}A_{\nu}^{b}\right)^{2}\right] - g\bar{\psi}^{\alpha}\gamma_{\mu}R_{\alpha\beta}^{a}\psi^{\beta}A_{\mu}^{a} - \frac{1}{4}g^{2}f^{abc}f^{ade}A_{\mu}^{b}A_{\nu}^{c}A_{\mu}^{d}A_{\nu}^{c}$$

propagator of 2ϵ scalar fields, gauge interaction ϵ -scalars

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$
DRED: $A_{4}^{\mu} \rightarrow A_{D}^{\mu} \oplus A_{2\epsilon}^{\mu}, \partial_{4}^{\mu} \rightarrow \partial_{D}^{\mu} \oplus 0_{2\epsilon}^{\mu}$

$$\Rightarrow \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{2\alpha}\left(\partial^{\mu}A_{\mu}\right)^{2} + C^{a*}\partial^{\mu}D_{\mu}^{ab}C^{b} + i\bar{\psi}^{\alpha}\gamma^{\mu}D_{\mu}^{\alpha\beta}\psi^{\beta}$$

$$+ \frac{1}{2}\left(D_{\mu}^{ab}A_{\nu}^{b}\right)^{2}\left[-g\bar{\psi}^{\alpha}\gamma_{\mu}R_{\alpha\beta}^{a}\psi^{\beta}A_{\mu}^{a}\right] - \frac{1}{4}g^{2}f^{abc}f^{ade}A_{\mu}^{b}A_{\nu}^{c}A_{\mu}^{d}A_{\nu}^{e}$$
Yukawa-type interaction of fermion with ε -scalars

$$\mathcal{L} = -\frac{1}{4} F^{2}_{\mu\nu} - \frac{1}{2\alpha} \left(\partial^{\mu} A_{\mu} \right)^{2} + C^{a*} \partial^{\mu} D^{ab}_{\mu} C^{b} + i \bar{\psi}^{\alpha} \gamma^{\mu} D^{\alpha\beta}_{\mu} \psi^{\beta}$$

$$\mathsf{DRED:} A^{\mu}_{4} \to A^{\mu}_{D} \oplus A^{\mu}_{2e}, \partial^{\mu}_{4} \to \partial^{\mu}_{D} \oplus 0^{\mu}_{2e}$$

$$\Rightarrow \mathcal{L} = -\frac{1}{4} F^{2}_{\mu\nu} - \frac{1}{2\alpha} \left(\partial^{\mu} A_{\mu} \right)^{2} + C^{a*} \partial^{\mu} D^{ab}_{\mu} C^{b} + i \bar{\psi}^{\alpha} \gamma^{\mu} D^{\alpha\beta}_{\mu} \psi^{\beta}$$

$$+ \frac{1}{2} \left(D^{ab}_{\mu} A^{b}_{\nu} \right)^{2} - g \bar{\psi}^{\alpha} \gamma_{\mu} R^{a}_{\alpha\beta} \psi^{\beta} A^{\mu}_{\mu} - \frac{1}{4} g^{2} f^{abc} f^{ade} A^{b}_{\mu} A^{c}_{\nu} A^{d}_{\mu} A^{e}_{\nu}$$

Quartic self-interaction of ε -scalars

- multi-scale three-loop diagrams: t, \tilde{t}_1 , \tilde{t}_2 , \tilde{q} , \tilde{g}
- can't do integrals for arbitrary masses
 - assume fixed hierarchy among superpartner masses

$$egin{aligned} m_q = 0, & m_t \ll m_{ ilde{t}_1} pprox m_{ ilde{t}_2} pprox m_{ ilde{g}} pprox m_{ ilde{q}} \ & m_t \ll m_{ ilde{t}_1} \ll m_{ ilde{t}_2} pprox m_{ ilde{g}} \ll m_{ ilde{q}} \end{aligned}$$

- asymptotic expansion leads to one-scale integrals
- complication: hierarchy not known
- perform calculation for many hierarchies, choose the most appropriate

asymptotic expansion: algorithmic way to disentangle scales

[Gorishnii '87; Smirnov '90; Tkachov '93; Pivovarov '93]

- partition diagram into subgraphs that
 - contain all the propagators with heaviest mass
 - are 1PI w.r.t. the other scales
- taylor expand the subgraphs in the other scales
- insert the taylor expansion as an effective vertex into the original diagram
- iterate with the next to heaviest mass

result: expansion in ratios and logarithms of the scales coefficients are one-scale integrals

automatisation: q2e, exp

[Harlander, Seidensticker]

Sample Result: $m_{\tilde{t}_{1,2}} = m_{\tilde{g}} \ll m_{\tilde{q}}$ (on-shell)

$$\begin{split} \Delta M_h &= -\frac{3G_F M_t^4}{\sqrt{2}\pi^2} \Biggl\{ -L_{tS} + \frac{\alpha_s}{\pi} \left[4L_{tS} - 2L_{tS}^2 \right] + \left(\frac{\alpha_s}{\pi} \right)^2 \left[-\frac{1091}{324} - \frac{1}{27}\pi^2 - \frac{1}{9}\zeta_3 \right. \\ &+ \left(\frac{1591}{108} + 3L_{\mu t} - \frac{1}{3}\pi^2 + \frac{4}{9}\pi^2 \ln 2 - \frac{55}{18}L_{t\bar{q}} - \frac{5}{6}L_{t\bar{q}}^2 \right) L_{tS} \\ &+ \left(-\frac{19}{18} - \frac{3}{2}L_{\mu t} + \frac{5}{3}L_{t\bar{q}} \right) L_{tS}^2 - \frac{53}{18}L_{tS}^3 \\ &+ \left(-\frac{475}{108} + \frac{5}{9}\pi^2 \right) L_{t\bar{q}} + \frac{25}{36}L_{t\bar{q}}^2 + \frac{5}{18}L_{t\bar{q}}^3 \\ &+ \mathcal{O}\left(\frac{M_S^2}{M_{\bar{q}}^2} \right) \Biggr] \Biggr\}, \\ L_{tS} &= \ln \frac{M_t^2}{M_{SUSY}^2}, \qquad L_{\mu t} = \ln \frac{\mu^2}{M_t^2}, \qquad L_{t\bar{q}} = \ln \frac{Mt^2}{M_{\bar{q}}^2} \end{split}$$

Sample Result: $m_{\tilde{t}_{1,2}} = m_{\tilde{g}} \ll m_{\tilde{q}}$ (on-shell)

Sample Result: $m_{\tilde{t}_{1,2}} = m_{\tilde{g}} \ll m_{\tilde{q}}$ (on-shell)

• renormalisation scheme: minimal subtraction vs. on-shell

renormalisation scheme: minimal subtraction vs. on-shell

• renormalisation scheme: minimal subtraction vs. on-shell

• renormalisation scheme: minimal subtraction vs. on-shell

need two-loop conversion formula $m_t^{\overline{\text{DR}}}(m_t^{OS})$

[Martin '05]

need two-loop conversion formula $m_t^{\overline{\text{DR}}}(m_t^{OS})$ [Martin '05] choice: minimal subtraction using Dimensional Reduction (DR)

Avoiding $\frac{M^2}{m^2}$ terms

 agreement with literature two-loop
 3-loop LL and NLL

[Degrassi, Slavich, Zwirner '01]

[Martin '07]

- calculated in general covariant gauge
- calculation in unbroken SUSY: corrections vanish

combine with corrections from other sectors

- use existing "wheel": FeynHiggs
- consistent renormalisation of parameters: on-shell vs. modified minimal subtraction using DRED
- consistent values of parameters
 - spectrum generator via SUSY Les Huches interface
 - evolve α_s (RunDec, RunDecSUSY)

[Chetyrkin, Kühn, Steinhauser '00; Harlander, Mihaila, Steinhauser '05,'07]

- convert *m_t* to DR scheme using four-loop running and two-loop decoupling [Kunz, Mihaila, in preparation]
- automatic choice of appropriate approximation
 - compare approximation at two loops with full two loop result

http://www.ttp.kit.edu/Progdata/ttp10/ttp10-23

$$\alpha_s^{\overline{MS},QCD5}(m_Z)$$

$$\rightarrow \alpha_s^{\overline{DR},MSSM}(\mu)$$

top mass

$$\rightarrow m_t^{\overline{DR},MSSM}(\mu)$$

strong coupling

$$\alpha_s^{\overline{MS},QCD5}(m_Z) o \alpha_s^{\overline{MS},QCD5}(\mu) o \alpha_s^{\overline{DR},MSSM}(\mu)$$

- run to large scale (4 loops)
- couple to full theory, go to \overline{DR} (2 loops)

top mass

$$m_t^{OS}$$

$$ightarrow m_t^{\overline{DR},MSSM}(\mu)$$

strong coupling

$$\alpha_s^{\overline{MS},QCD5}(m_Z) o lpha_s^{\overline{MS},QCD5}(\mu) o lpha_s^{\overline{DR},MSSM}(\mu)$$

- run to large scale (4 loops)
- couple to full theory, go to \overline{DR} (2 loops)

top mass

$$m_t^{ ext{OS}} o m_t^{\overline{ ext{MS}}, QCD5}(\mu = m_t^{ ext{OS}}) o m_t^{\overline{ ext{MS}}, QCD5}(\mu) o m_t^{\overline{ ext{DR}}, ext{MSSM}}(\mu)$$

- convert on-shell mass to MS scheme (3 loops)
- run to large scale (4 loops)
- couple to full theory, go to \overline{DR} (2 loops)
 Philipp Kant
 Calculation of Three-Loop Terms, for the MSSM Higgs Mass

Program Organisation

Numerics for constrained MSSM

Error due to Asymptotic Expansion

Perturbative Behaviour

2 Radiative Corrections

3 Leading Three-Loop Corrections

Phenomenological Consequences

5 Conclusions

Numerics for Unmixed Stops

 error bands: parametric uncertainty

> $m_t^{
> m pole} = 173.3 \pm 1.8 \, {
> m GeV}$ $lpha_s(m_Z) = 0.1184 \pm 0.0007$

- *m_t* dominates conservative error
- size of three-loop terms grows with superpartner masses

for multi-TeV squarks, three-loop terms shift M_h by 0.5 to 3 GeV

Comparison With 2-Loop Codes

Comparison With 2-Loop Codes

Comparison With 2-Loop Codes

LHC Discovery Potential

- negligible stop mixing
- σ includes estimated perturbative error and parametric uncertainty due to M_t and α_s
- 3-4 TeV stop masses possible requiring $\Omega_{\chi} = \Omega_{\rm DM}$
- even lighter whithout cosmological bounds

LHC Discovery Potential

- significant stop mixing
- favoured region completely accessible by 14 TeV LHC
- m₀ as low as 1 TeV preferred

2 Radiative Corrections

3 Leading Three-Loop Corrections

Phenomenological Consequences

- Higgs mass provides unique opportunity to constrain SUSY spectrum
 - for both light and heavy scales
- three-Loop Terms are important
 - M_h raised by as much as 3 GeV
 - lowers required scalar masses to 3-4 TeV
- future improvements
 - momentum-dependent terms at two-loop level
 - α_t² α_s terms cancellations in a particular scenario is this a general feature?
- remaining uncertainties
 - induced uncertainty from Mt 0.5-2 GeV
 - missing higher orders roughly 1 GeV subject to size of SUSY masses

[Martin '07]