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A Standard Model-like Higgs particle has been
discovered by the ATLAS and CMS experiments at CERN

We see evidence
of this particle

in multiple channels.

We can reconstruct
its mass and we know
that is about 125 GeV. 

The rates are consistent
with those expected 

in the Standard Model.
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Large Variations of Higgs couplings are still possible

But we cannot determine the Higgs couplings very accurately

As these measurements become more precise, they constrain possible 
extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated 
extensions of the Standard Model, like SUSY.
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Marcela talking to Peter Higgs
Fabiola Gianotti listening
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With Oscar Stal, Fabiola Gianotti, Lars Brink and Paul Langacker
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With legendary t’Hooft and his wife
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With Brout’s wife
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I claim no resemblance at all
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With Discovery Announcers
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Banquet
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The Beast and the Beauty
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Marcela feeling asymptotically free
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The Ballroom

Thursday, December 19, 2013



Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass 

*the stop masses and mixing 
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Figure 2. Comparison of the diagrammatic two-loop O(m2
t h

2
t αs) result for mh, to leading order

in mt/MS [eqs. (46) and (47)] with the “mixed-scale” one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in fig. 1. “Mixed-scale” indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at different

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2
g̃ + m2

t )
1/2 = 1 TeV for the cases of tan β = 1.6 and tanβ = 30, respectively.

16

Standard Model-like Higgs Mass

Carena, Haber, Heinemeyer, Hollik,Weiglein,C.W.’00

Xt = At − µ/ tanβ, Xt = 0 : No mixing; Xt =
√

6MS : Max. Mixing

Long list of two-loop computations:  Carena, Degrassi, Ellis, Espinosa, Haber, Harlander, Heinemeyer, Hempfling, 
Hoang, Hollik, Hahn, Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, C.W., Weiglein, Zhang, Zwirner

mt = 180 GeV.
For mt = 173 GeV,
the maximum mh

shifts to 127 GeV.

SM-like MSSM Higgs Mass 

At~2.4 MS 

At=0 

2 -loop corrections:      

Many contributions to two loop corrections computations:  
Brignole, M.C., Degrassi,  Diaz, Ellis, Haber, Hempfling, Heinemeyer, Hollik, Espinosa,  Martin, 
 Quiros, Ridolfi, Slavich,  Wagner, Weiglein, Zhang, Zwirner, …  

M.C, Haber, Heinemeyer,  
Hollik,Weiglein,Wagner’00 

! 

mh "130 GeV
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2

as it captures many of the qualitative features that we

will see. We have characterized the scale of superpart-

ner masses with MS ≡
�
mt̃1mt̃2

�1/2
. First, we see that

decreasing tanβ always decreases the Higgs mass, inde-

pendent of all the other parameters (keeping in mind that

tanβ � 1.5 for perturbativity). So we expect to find a

lower bound on tanβ coming from the Higgs mass. Sec-

ond, we see that the Higgs mass depends on Xt/MS as

a quartic polynomial, and in general it has two peaks at

Xt/MS ≈ ±
√
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in

up to four places, leading to up to four preferred values

for Xt/MS . Finally, we see that for fixed Xt/MS , the

Higgs mass only increases logarithmically with MS itself.

So we expect a mild lower bound on MS from mh = 125

GeV.

Now let’s demonstrate these general points with de-

tailed calculations using FeynHiggs. Shown in fig. 1 are

contours of constant Higgs mass in the tanβ, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed

quark and right-handed up-type quark scalar fields). The

shaded band corresponds to mh = 123 − 127 GeV, and

the dashed lines indicate the same range of Higgs masses

but with mt = 172 − 174 GeV. (The central value in all

our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get

mh ≈ 125 GeV, we must have

tanβ � 3.5 (2)

So this is an absolute lower bound on tanβ just from the

Higgs mass measurement. We also find that the Higgs

mass basically ceases to depend on tanβ for tanβ beyond

∼ 20. So for the rest of the paper we will take tanβ = 30

for simplicity.

Fixing tanβ, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs

MS and Xt. We see that for large MS , we want

Xt

MS
≈ −3, −1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-

scale can absolutely be are

|Xt| � 1000 GeV, MS � 500 GeV. (4)

It is also interesting to examine the limits in the plane

of physical stop masses. Shown in fig. 3 are plots of the

contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here

the values of Xt < 0 and Xt > 0 were chosen to satisfy

mh = 125 GeV, and the solution with smaller absolute

value was chosen. In the dark gray shaded region, no

solution to mh = 125 GeV was found. Here we see that

the t̃1 can be as light as 200 GeV, provided we take t̃2 to

be heavy enough. We also see that the heavy stop has to

be much heavier in general in the Xt < 0 case.
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FIG. 1. Contour plot of mh in the tanβ vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to ∼ 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.
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FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tanβ = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ≈ 125 GeV implies for

the weak-scale MSSM parameters, we now turn to the

implications for the underlying model of SUSY-breaking

and mediation. In RG running down from a high scale,

for positive gluino mass M3, the A-term At decreases.

The gluino mass also drives squark mass-squareds larger

Large Mixing in the Stop Sector Necessary

P. Draper, P. Meade, M. Reece, D. Shih’11
L. Hall, D. Pinner, J. Ruderman’11

M. Carena, S. Gori, N. Shah, C. Wagner’11
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon’11

S. Heinemeyer, O. Stal, G. Weiglein’11
U. Ellwanger’11

...
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Soft supersymmetry Breaking Parameters

Large stop sector mixing 
  At > 1 TeV

No lower bound on the lightest stop 
  One stop can be light and the other heavy   

 or
in the case of similar stop soft masses. 

both stops can be below 1TeV

At large tan beta, light staus/sbottoms can decrease
       mh by several GeV’s via Higgs mixing effects 
           and compensate tan beta enhancement 

Intermediate values of tan beta lead to
 the largest values of mh for the same values 

of stop mass parameters 

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv:1112.336, +L.T.Wang, arXiv:1205.5842
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Case of heavy Stops
Impact of higher loops 

Recalculation of RG prediction including up to 4 loops in 
RG expansion. 

 Agreement with S. Martin’07  and Espinosa and 
Zhang’00, Carena, Espinosa, Quiros,C.W.’00,
Carena, Haber, Heinemeyer,  Weiglein, Hollik and C.W.’00,
in corresponding limits.

Two loops results agree w FeynHiggs and CPsuperH 
results

G. Lee, C.W’13
(See also S. Martin’07,                                                             
P. Kant, R. Harlander, L. Mihalla, M. Steinhauser’10
J. Feng, P. Kant, S. Profumo, D. Sanford.’13, )
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In supersymmetric theories, there is one Higgs doublet that behaves like the

SM one.

HSM = Hd cos β +Hu sin β, tan β = vu/vd

The orthogonal combination may be parametrized as

H =

�
H + iA

H
±

�

whereH, H
±
and A represent physical CP-even, charged and CP-odd scalars

(non standard Higgs).

Strictly speaking, the CP-even Higgs modes mix and none behave exactly

as the SM one.

h = − sinα Re(H
0
d) + cosα Re(H

0
u)

In the so-called decoupling limit, in which the non-standard Higgs bosons

are heavy, sinα = − cos β and one recovers the SM as an effective theory.

2

Thursday, December 19, 2013



CP-even Higgs Mixing Angle and Alignment

sinα =
M2

12�
M4

12 + (M2
11 −m2

h)
2

− tanβ M2
12 =

�
M2

11 −m2
h

�
sinα = − cosβ

Condition independent of the CP-odd Higgs mass.

seen by inspecting Table 2 in Ref. [5]. It is important to observe that sβ−α = ±1 results in

an overall sign difference in the couplings of the SM-like Higgs and, hence, has no physical

consequences.

Similar arguments can be made in the case in which it is the heavy Higgs that behaves

as the SM Higgs. For this to occur,

sβ−α = 0 (29)

and therefore cβ−α = ±1. In the following, we shall concentrate in the most likely case that

the lightest CP-even Higgs satisfy the alignement condition. The heavy Higgs case can be

treated in an analogous way.

A. Derivation of the conditions for alignment

there’s only one subsection in this section. do we need to keep it as a separate subsection?

IL)

It is instructive to first derive the alignment limit in the usual decoupling regime with

a slightly unusual approach, by considering the eigenvalue equation of the CP-even Higgs

mass matrix, Eq. (18), which after plugging in the mass matrix in Eq. (9) becomes



 s2β −sβcβ

−sβcβ c2β







 −sα

cα



 = − v2

m2
A



 L11 L12

L12 L22







 −sα

cα



+
m2

h

m2
A



 −sα

cα



 . (30)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than that

of the SM-like Higgs, m2
A � v2,m2

h. Then we see at leading order in v2/m2
A and m2

h/m
2
A the

right-hand side of Eq. (30) can be ignored and the eigenvalue equation reduces exactly to

the alignment limit, namely


 s2β −sβcβ

−sβcβ c2β







 −sα

cα



 = 0 , (31)

which gives identical result to the well-known decoupling limit [3], cβ−α = 0.

One of the main results of this work is to find the generic conditions to obtain alignment

without decoupling. The decoupling limit, where the low-energy spectrum contains only the

SM and no new light scalars, is only a subset of the more general alignment limit in Eq. (31).

In particular, quite generically, there exists regions of parameter space where one attains the

8

M. Carena, I. Low, N. Shah, C.W.’, arXiv:1310.2248
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alignment limit with new light scalars not far above mh = 125 GeV. The key observation is

that, while decoupling reaches alignment by neglecting the right-hand side of Eq. (30), the

alignment can be obtained if the right-hand side of Eq. (30) vanishes identically:

v2



 L11 L12

L12 L22







 −sα

cα



 = m2
h



 −sα

cα



 . (32)

If a solution for the tβ can be found, then the alignment limit would occur for arbitrary

values of mA and does not require non-SM-like scalars to be heavy! More explicitly, subject

to Eq. (31), we can re-write the above matrix equation as two algebraic equations:

(C1) : m2
h = v2L11 + tβv

2L12 = v2
�
λ1c

2
β + 3λ6sβcβ + λ̃3s

2
β + λ7tβs

2
β

�
, (33)

(C2) : m2
h = v2L22 +

1

tβ
v2L12 = v2

�
λ2s

2
β + 3λ7sβcβ + λ̃3c

2
β + λ6t

−1
β c2β

�
. (34)

Recall that that λ̃3 = λ3 + λ4 + λ5. In the above Lij is known once a model is specified

and mh is measured to be 125 GeV. Notice that (C1) depends on all quartic couplings in

the scalar potential except λ2, while (C2) depends on all quartics but λ1. When the model

parameters satisfy Eqs. (33) and (34), the lightest CP-even Higgs behaves exactly like a SM

Higgs boson even if the non-SM-like scalars are light. A detailed analysis on the physical

solutions is presented in the next Section.

IV. ALIGNMENT IN GENERAL 2HDM

The condition (C1) and (C2) may be re-written as cubic equations in tβ, with coefficients

that depend on mh and the quartic couplings in the scalar potential,

(C1) : (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t2β = v2(3λ6tβ + λ7t

3
β) , (35)

(C2) : (m2
h − λ2v

2
) + (m2

h − λ̃3v
2
)t−2

β = v2(3λ7t
−1
β + λ6t

−3
β ) , (36)

Alignment without decoupling occurs only if there is (at least) a common physical solution

for tβ between the two cubic equations.
3
From this perspective it may appear that alignment

without decoupling is a rare and fine-tuned phenomenon. However, as we will show below,

there are situations where a common physical solution would exist between (C1) and (C2)

without fine-tuning.

3 Since tβ > 0 in our convention, a physical solution means a real positive root of the cubic equation.

9

Alignment Conditions

• If fulfilled not only alignment is obtained, but also the right Higgs 
mass,                     , with                  and 

• For                         the conditions simplify, but can only be fulfilled if  

• Conditions not fulfilled in the MSSM, where both 

λSM = λ1 cos
4 β + 4λ6 cos

3 β sinβ + 2λ̃3 sin
2 β cos2 β + 4λ7 sin

3 β cosβ ++λ2 sin
4 β

m2
h = λSMv2

λ6 = λ7 = 0

A. Alignment for vanishing values of λ6,7

As a warm up exercise it is useful to consider solutions to the alignment conditions

(C1) and (C2) when λ6 = λ7 = 0 and λ1 = λ2, which can be enforced by the symmetries

Φ1 → −Φ2 and Φ1 → Φ2, then (C1) and (C2) collapse into quadratic equations

(C1) → (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t2β = 0 , (37)

(C2) → (m2
h − λ1v

2
) + (m2

h − λ̃3v
2
)t−2

β = 0 , (38)

from which we see a physical solution exists for tβ = 1, whenever

λSM =
λ1 + λ̃3

2
(39)

where we have expressed the SM-like Higgs mass as

m2
h = λSMv

2 . (40)

From Eq. (39) we see the above solution leading to tβ = 1 is obviously a special one, since

it demands λSM to be the average value of λ1 and λ̃3.

For the purpose of comparing with previous studies, let’s relax the λ1 = λ2 condition

while still keeping λ6 = λ7 = 0. Recall that the Glashow-Weinberg condition [7] on the

absence of tree-level FCNC requires a discrete symmetry, Φ1 → −Φ1, which enforces at the

tree-level λ6 = λ7 = 0. Then the two quadratic equations have a common root if and only

if the determinant of the Coefficient Matrix of the two quadratic equations vanishes,

Det



 m2
h − λ̃3v2 m2

h − λ1v2

m2
h − λ2v2 m2

h − λ̃3v2



 = (m2
h − λ̃3v

2
)
2 − (m2

h − λ1v
2
)(m2

h − λ2v
2
) = 0 . (41)

Then the positive root can be expressed in terms of (λ1, λ̃3),

t(0)β =

�
λ1 − λSM

λSM − λ̃3

. (42)

We see from Eqs. (41) and (42), that t(0)β can exist only if {λSM,λ1,λ2, λ̃3} have one of

the two orderings

λ1 ≥ λSM ≥ λ̃3 and λ2 ≥ λSM ≥ λ̃3 , (43)

10

or

λ1 ≤ λSM ≤ λ̃3 and λ2 ≤ λSM ≤ λ̃3 , (44)

It should be emphasized that the existence of the solution t(0)β is generic, in the sense that

once one of the conditions in Eqs. (43) and (44) is statisfied, then Eq. (42) leads to the

alignment solution t(0)β for a given (λ1, λ̃3). However, Eq. (41) must be also satisfied to solve

for the desired λ2 that would make t(0)β a root of (C2). More specifically, the relations

λ2 − λSM =
λSM − λ̃3�

t(0)β

�2 =
λ1 − λSM�

t(0)β

�4 (45)

must be fulfilled. Therefore, the alignment solution demands a specific fine-tuned relation

between the quartic couplings of the 2HDM. For instance, it is clear from Eqs. (42) and (45

that, if all quartic couplings are O(1), t(0)β ∼ O(1) as well unless λ̃3 and λ2 are tuned to be

very close to λSM or λ1 is taken to be much larger than λSM. For examples, t(0)β ∼ 5 could

be achieved for (λ1, λ̃3,λ2) ∼ (1., 0.23, 0.261), or for (λ1, λ̃3) ∼ (5., 0.07, 0.263).

Our discussions so far apply to scenarios of alignment limit studied, for instance, in

Refs. [4, 5], both of which set λ6 = λ7 = 0. The generic existence of fine-tuned solutions

may also shed light on why alignment without decoupling, on the one hand, has remained

elusive for so long and, on the other hand, appeared in different contexts considered in

previous studies.

B. Large tanβ alignment in 2HDMs

The symmetry Φ1 → −Φ1 leading to λ6 = λ7 = 0 is broken softly by m12. Thus a

phenomenologically more interesting scenario is to consider small but non-zero λ6 and λ7,

which we turn to next.

We study solutions to the alignment conditions (C1) and (C2) under the assumptions,

λ6,λ7 � 1 . (46)

Although general solutions of cubic algebraic equations exist, much insight could be gained

by first solving for the cubic roots of (C1) in perturbation,

t(±)
β = t(0)β ±

3

2

λ6

λSM − λ̃3

±
λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ2

6,λ
2
7) , (47)

t(1)β =
λSM − λ̃3

λ7
− 3λ6

λSM − λ̃3

− λ7(λ1 − λSM)

(λSM − λ̃3)2
+O(λ2

6,λ
2
7) . (48)

11

or

λ1, λ̃3 < λSM

λ3 + λ4 + λ5 = λ̃3λSM � 0.26

M. Carena, I. Low, N. Shah, C.W.’13
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II. INTEGRATING OUT THE MSSM

In this section we give an overview of the threshold corrections to the running SM pa-

rameters in the MS scheme, obtained by integrating out the MSSM at a scale MS. For

the Higgs quartic coupling, we include one-loop gauge, Higgs, and third generation Yukawa

corrections, as well as two-loop corrections controlled by the top Yukawa and strong gauge

coupling. We pay particular attention to terms arising from changing the renormalization

scheme from DR in the MSSM to MS.

The quartic coupling in the MSSM is determined at leading order by the D-terms,

λtree =
1

4
(g2Y + g22)c

2
2β, (3)

where, in this section, we use the notation λ ≡ λMSSM(MS) for the MSSM quartic coupling

in the MS scheme at Q = MS and cβ = cos β, sβ = sin β, and tβ = tan β = vu/vd, with

vu and vd the vacuum expectation values of the MSSM Higgs doublets. It is well-known

that λ receives significant non-logarithmic radiative corrections from the mixing of heavy

SUSY partners at the high scale. In the framework of effective field theory, these “threshold

corrections” are a result of the decoupling of heavy particles at the high scale.

The largest effect comes from the top-stop sector. The squark mass matrix in the MSSM

has the form

M2
t̃ =

�
m2

t̃L
+m2

t + c2β
�

1
2 −

2
3s

2
W

�
m2

Z mtXt

mtXt m2
t̃R

+m2
t +

2
3c2βs

2
Wm2

Z

�
, (4)

where we have followed the notation of [18] with the stop mixing parameter defined as

Xt = At − µ cot β and sW = sin θW , with θW the Weinberg angle. Diagonalizing this matrix

yields the tree-level stop masses mt̃1 ,mt̃2 and the stop mixing angle θt̃. Neglecting the terms

proportional to mZ and setting mt̃L = mt̃R = MSUSY,M2
S = M2

SUSY + m2
t , we obtain the

simplified squark mass matrix

M2
t̃ =

�
M2

S mtXt

mtXt M2
S

�
, (5)

with

m2
t̃1,2

= M2
S ∓ |mtXt|. (6)
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Details of the Calculation

Tree-level coupling, should be evaluated at the SUSY breaking scale :

Simplified stop spectrum :

This approximation is abandoned at the one-loop level, in the 
evaluation of the thresholds to the quartic coupling
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We choose the scale MS as our high scale, assuming that all supersymmetric partners have

similar masses; however, we keep the MSSM µ parameter free with µ = M1 = M2 so that

light electroweakinos can be accommodated.

From [15], we include the one-loop corrections that are not cβ suppressed, as we will be

interested in the tβ � 1 case. These include terms from decoupling stops, sbottoms, and

staus:
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where ht (hb, hτ ) is the MSSM top (bottom, tau) Yukawa coupling, �Xt = Xt/MS, µ̂ = µ/MS,

and following the notation of [19], we keep track of loop order via κ = 1/(16π2). Note that

the parameters on the right-hand sides of these equations are running couplings evaluated

at MS. At tree-level, the MSSM Yukawa couplings are related to the SM Yukawa couplings

by

yt = htsβ, yb = hbcβ, yτ = hτcβ; (10)

however, these couplings are modified at one-loop order at MS by [24, 25]:
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where Xb = Ab − µtβ is the sbottom mixing parameter, and we have set all MSSM masses

mg̃ = M2 = M1 = mb̃i
= mτ̃i = mν̃i = MS and will assume Ab = At. The electroweak cor-

rections to ht have been omitted, as we are also omitting the h2
t g

2
2, h

2
t g

2
1 threshold corrections

that originate from the m2
Z term in M2

t̃
. Although these appear at different orders, the quar-

tic power of ht in ∆(αt)
th partially compensates the additional loop suppression factor.[PD:
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�
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where Xb = Ab − µ tβ and Xτ = Aτ − µ tβ are the sbottom and stau mixing parameters,

st, sb, sτ (ct, cb, cτ ) are the sines (cosines) of the stop, sbottom, and stau mixing angles, and

the function I(a, b, c) is defined as

I(a, b, c) =
a2b2 log(a2/b2) + b2c2 log(b2/c2) + a2c2 log(c2/a2)

(a2 − b2)(b2 − c2)(a2 − c2)
. (19)

We will set all MSSM masses mg̃ = mb̃i
= mτ̃i = mν̃i = MS (such that s2X = c2X = 1/2 with

X = t, b, τ), assume At = Ab = Aτ , and consider the two scenarios M2 = M1 = µ = MS

(the “high µ” case) and M2 = M1 = µ = 200 GeV (the “low µ” case).2 Taking the

appropriate limits when the arguments are degenerate, we have the common asymptotic

forms for I(a, b, c):

I(MS,MS,MS) =
1

2M2
S

, (20)

I(MS,MS, µ) =
1

M2
S

(1 + µ̂2(1 + log µ̂2)), µ̂ � 1, (21)

I(MS, µ, µ) = − 1

M2
S

(1 + µ̂2) log µ̂2, µ̂ � 1. (22)

For lower values of MS ∼ 1 TeV and µ ∼ 200 GeV, the correction can be significant, e.g.

I(1, 1, 0.2) ∼ 0.76.

The expressions for the dominant two-loop corrections of O(αsαt) and O(α2
t ) will depend

on the scheme used for the one-loop corrections. The two-loop finite O(αsαt) corrections

2 We have neglected the threshold corrections from this intermediate scale to λ, yt. They can be found in

[26], and involve only gY , g2,λ. We estimate that the corrections to λ lower mh by about 0.5 GeV.
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The expressions for the dominant two-loop corrections of O(αsαt) and O(α2
t ) will depend

on the scheme used for the one-loop corrections. The two-loop finite O(αsαt) corrections

were computed diagrammatically in the OS scheme in [7], and in the DR scheme using

the effective potential method in [11]. In a follow-up to the latter paper [12], the O(α2
t )

corrections were also computed. It was shown in [12] and [18] that the different expressions

for the O(αtαs) corrections in the two schemes are reconciled once the one-loop O(αt)

corrections are written in the appropriate scheme.

We will express λ in terms of the MSSM couplings in the MS scheme given in Eqs. (11),

(12), (13). To determine ∆(αsαt)
th λ,∆
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th λ in this scheme, let us write the one-loop correction

to the running DR Higgs mass obtained from the Higgs effective potential in [12]
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where all parameters are evaluated at a renormalization scale Q, and we are using the

notation of Appendix A (see Table IV). Here, we have included the logarithmic contribution

and used the subscript DR to distinguish this correction from those in Eqs. (7, 8, 9), which

contain only the finite or threshold terms. Converting this to a correction in λ̃, we have
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where we have now chosen Q = MS. In this expression, λ̃ is a 1PI coupling; in the Wilsonian

effective theory, the logarithmic term will be obtained from the running below MS. Param-

eters in this term should be converted to the MS scheme in the SM, i.e. �mt(MS) → mt(MS)
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�M2
S

��
, (18)

where we have now chosen Q = MS. In this expression, λ̃ is a 1PI coupling; in the Wilsonian

effective theory, the logarithmic term will be obtained from the running below MS. Param-

eters in this term should be converted to the MS scheme in the SM, i.e. �mt(MS) → mt(MS)
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and h̃t(MS) → yt(MS)/sβ multiplied by the appropriate one-loop corrections given in Ap-

pendix A. This substitution produces a finite correction once the logarithm is expanded

to one-loop order. For the non-logarithmic terms, we change �m(MS) → mt(MS) and

h̃t(MS) → ht(MS) to match the threshold corrections in Eq. (7). After performing the

scheme conversion for the one-loop terms and modifying the two-loop O(αsαt) and O(α2
t ),

we find
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. (20)

We have borrowed the notation of [12], with the constant K, parameter �Yt, and functions fi

defined as:

K = − 1√
3

� π/6

0

dx log(2 cosx) ∼ −0.1953256, (21)

�Yt = (At − µtβ)/MS = �Xt +
2µ̂

sin 2β
, (22)

f1(µ̂) =
µ̂2

1− µ̂2
log µ̂2, (23)

f2(µ̂) =
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�
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1− µ̂2
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�
, (24)
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�
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6
− µ̂2 log µ̂2

�
, (25)

and the dilogarithm function Li2 is

Li2(x) = −
� 1

0

dy
log(1− xy)

y
. (26)
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We will be interested in the limits of the fi as µ̂ → 0 or 1, with

f(1,2,3)(µ̂) =





(0, 1, π

2

6 ) µ̂ = 0,

(−1, 12 ,−
9
4) µ̂ = 1.

(27)

Finally, we include one-loop threshold corrections from converting the tree-level quartic

coupling from the DR to MS scheme and those from the heavy Higgses, which are taken

from [26]

∆(sc)
th = −κ

��3
4
− 1

6
c22β

�
g42 +

3

10
g21g

2
2 +

9

100
g41

�
, (28)

∆(H)
th = − 1

16
κ
�
g22 +

3

5
g21

�2
s24β. (29)

Our final expression for λMSSM(MS) to which we match the SM running quartic coupling is

λMSSM(MS) = λtree +∆(sc)
th +∆(H)

th +∆(αt)
th +∆(αb)

th +∆(ατ )
th +∆(αsαt)

th +∆
(α2

t )
th . (30)

III. RUNNING THE SM DOWN FROM MS

Once the MSSM has been integrated out, the SM parameters can be run down to the

electroweak scale and the spectrum computed. The β-function βλ = dλ
dt for a generic running

coupling λ can be written as

βλ(t) ≡
∞�

n=1

κnβ(n)
λ (t) =

∞�

n=1

κn

∞�

k=0

β(n,k)
λ (t̃)

k!
(t− t̃)k, (31)

where

κ ≡ 1

16π2
, t ≡ logQ, β(n,k)

λ (t) ≡ dkβ(n)
λ

dtk
(t). (32)

We will also use the shorthand β(n)
λ ≡ β(n,0)

λ . We will denote �Q as the high scale, and we

define L ≡ t̃− t = log( �Q/Q) > 0. Integrating from t to t̃, we find

λ(Q) = λ( �Q)−
∞�

n=1

κn

∞�

k=0

(−1)k
β(n,k)
λ (t̃)

(k + 1)!
Lk+1. (33)

Alternatively, we can expand the beta-function coefficients β(n,k)
λ about the low scale Q,

λ( �Q) = λ(Q) +
∞�

n=1

κn

∞�

k=0

β(n,k)
λ (t)

(k + 1)!
Lk+1. (34)
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Evolution of the quartic Coupling

We want to evaluate the coupling at the weak scale (mt) starting from 
the stop mass scale. It can be done in two ways, depending on where 
the couplings are evaluated.  Taking                                 ,  

These two expressions are not equivalent, and represent a different 
reorganization of the perturbativexpansion.  The second one is implemented in 
CPsuperH.   The first one leads to a faster convergence

from [26]
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4
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c22β
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g42 +
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2
g2
Y
g22 +

1

4
g4
Y

�
, (34)

∆(H)
th = − 1

16
κ(g22 + g2

Y
)
2s24β. (35)

Our final expression for λMSSM(MS) to which we match the SM running quartic coupling is

λMSSM(MS) = λtree +∆(sc)
th +∆(H)

th +∆(αt)
th +∆(αb)

th +∆(ατ )
th +∆(αsαt)

th +∆
(α2

t )
th . (36)

III. RUNNING THE SM DOWN FROM MS

Once the MSSM has been integrated out, the SM parameters can be run down to the

electroweak scale and the spectrum computed. The β-function βλ =
dλ
dt for a generic running

coupling λ can be written as

βλ(t) ≡
∞�

n=1

κnβ(n)
λ (t) =

∞�

n=1

κn
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k=0

β(n,k)
λ (t̃)

k!
(t− t̃)k, (37)

where

κ ≡ 1

16π2
, t ≡ logQ, β(n,k)

λ (t) ≡ dkβ(n)
λ

dtk
(t). (38)

We will also use the shorthand β(n)
λ ≡ β(n,0)

λ . We will denote �Q as the high scale, and we

define L ≡ t̃− t = log( �Q/Q) > 0. Integrating from t to t̃, we find

λ(Q) = λ( �Q)−
∞�

n=1

κn

∞�

k=0

(−1)
k
β(n,k)
λ (t̃)

(k + 1)!
Lk+1. (39)

Alternatively, we can expand the beta-function coefficients β(n,k)
λ about the low scale Q,

λ( �Q) = λ(Q) +

∞�

n=1

κn

∞�

k=0

β(n,k)
λ (t)

(k + 1)!
Lk+1. (40)

To see the equivalence with Eq. (39), we can evolve the beta-function coefficients β(n,k)
λ (t̃)

down to the low scale β(n,k)
λ (t) using the same expansion as in Eq. (37). The effect on the

beta-functions in Eq. (39) is to remove the tildes and make all the leading signs negative,

which agrees with Eq. (40).

We use two different methods to perform the renormalization group running. The most

precise approach is to numerically integrate the coupled SM MS RGEs for the seven param-

eters g3, g2, g1, yt, yb, yτ ,λ between Q = MS and Q = Mt. In the middle column of Table I we
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and

δ1λ =

�
− 12λ2 − λ

�
12y2t + 12y2b + 4y2τ − 9g22 −

9

5
g21

�
+ 12y4t + 12y4b + 4y4τ

− 9

4
g42 −

9

10
g22g

2
1 −

27

100
g41

�
L

+

�
− 6λ

�
g22 +

1

5
g21

�
+
�
g22 +

3

5
g21

�2
+ 4g42

�
1− 2s2βc

2
β

��
Lµ, (46)

δ2λ =

�
144λ3 + λ2

�
216y2t − 108g22 −

108

5
g21

�
+ λ

�
− 18y4t + 27g42 +

54

5
g22g

2
1 +

81

25
g41

�

+ λy2t

�
− 96g23 − 81g22 − 21g21

�
+ y4t

�
− 180y2t + 192g23 + 54g22 +

102

5
g21

�

+ y2t

�27
2
g42 +

27

5
g22g

2
1 +

81

50
g41

��
L2

−
��

24λ+ 12y2t − 9g22 −
9

5
g21

��
6λ

�
g22 +

1

5
g21

�2
−

�
g22 +

3

5
g21

�2
− 4g42

�
1− 2s2βc

2
β

���
LLµ

+

�
3
�
g22 +

1

5
g21

��
6λ

�
g22 +

1

5
g21

�2
−
�
g22 +

3

5
g21

�2
− 4g42

�
1− 2s2βc

2
β

���
L2
µ

+

�
78λ3 + 72λ2y2t + λy2t (3y

2
t − 80g23)− 60y6t + 64g23y

4
t

�
L, (47)

δ3λ =

�
− 1728λ4 − 3456λ3y2t + λ2y2t (−576y2t + 1536g23)

+ λy2t (1908y
4
t + 480y2t g

2
3 − 960g43) + y4t (1548y

4
t − 4416y2t g

2
3 + 2944g43)

�
L3

+

�
− 2340λ4 − 3582λ3y2t + λ2y2t (−378y2t + 2016g23)

+ λy2t (1521y
4
t + 1032y2t g

2
3 − 2496g43) + y4t (1476y

4
t − 3744y2t g

2
3 + 4064g43)

�
L2

+

�
− 1502.84λ4 − 436.5λ3y2t − λ2y2t (1768.26y

2
t + 160.77g23)

+ λy2t (446.764λy
4
t + 1325.73y2t g

2
3 − 713.936g43)

+ y4t (972.596y
4
t − 1001.98y2t g

2
3 + 200.804g43)

�
L, (48)
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δ4λ =

�
20736λ5 + 51840λ4y2t + λ3y2t (21600y

2
t − 23040g23)

+ λ2y2t (−30780y4t − 18720g23y
2
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+ λy2t (−22059y6t + 28512g23y
4
t + 10560g43y

2
t − 10560g63)

+ y4t (−8208y6t + 56016y6t g
2
3 − 84576y2t g

4
3 + 44160g63)

�
L4

+

�
48672λ5 + 101808λ4y2t + λ3y2t (30546y

2
t − 49152g23y

2
t )

λ2y2t (−50292y4t − 40896y2t g
2
3 + 45696g43)

+ λy2t (−33903y6t + 41376y4t g
2
3 + 35440g43y

2
t − 45184g63)

+ y4t (−15588y6t + 86880y4t g
2
3 − 161632y2t g

4
3 + 112256g63)

�
L3

+

�
63228.2λ5 + 72058.1λ4y2t + λ3y2t (25004.6y

2
t − 11993.5g23)

+ λ2y2t (27483.8y
4
t − 52858y2t g

2
3 + 18215.3g43)

+ λy2t (−51279y6t − 5139.56y4t g
2
3 + 50795.3y2t g

4
3 − 33858.8g63)
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�
L2. (49)

To simplify the expression, we have excluded the yb, yτ , g1, g2 contributions beyond two-loop

order.

To convert the running mass into the pole mass, we use the one-loop formula

M2
h = λ(Mt)v

2(Mt) + κ

�
3y2t (4m

2
t −m2
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9

2
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h
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where B0 is the one-loop Passarino-Veltman integral

B0(m1,m2,m3) = −
� 1

0
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�(1− x)m2

1 + xm2
2 − x(1− x)m2
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, (51)
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To simplify the expression, we have excluded the yb, yτ contributions beyond one-loop order,

and g1, g2 contributions beyond two-loop order.

To convert the running mass into the pole mass, we use the one-loop formula
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where B0 is the one-loop Passarino-Veltman integral

B0(m1,m2,m3) = −
� 1

0

log
�(1− x)m2

1 + xm2
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, (51)
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