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The conserved modified base 5-methylcytosine (5mC) is found 
across all domains of life. Large comparative studies in animals 
and plants have revealed high levels of variation in the rela-

tive amount and genomic location of 5mC across these lineages1–10. 
However, knowledge of 5mC in fungi is taxonomically limited and 
dispersed across several independent studies5,6,11–20. Similar to ani-
mals and plants, cytosines in repeats and transposons are methylated 
in some fungi; thus, 5mC has been implicated in genome defence. 
For example, in Neurospora crassa, some duplicated DNA segments 
are subjected to cytosine-to-thymine mutations by repeat-induced 
point mutation (RIP), and DNA is methylated by the 5mC meth-
yltransferases (5mC MTases) DIM-2 and RID9,21,22. Additionally, 
in some filamentous fungi, such as Ascobolus immersus, the analo-
gous methylation induced premeiotically leads to 5mC of some 
duplicates23,24. In contrast, 5mC in other fungal species maintained 
by DNA METHYLTRANSFERASE 1 (DNMT1)6 and/or DNA 
METHYLTRANSFERASE 5 (DNMT5)15 has unknown biological 
roles. Of the limited fungal species sampled to date, 5mC is not present 
in all, and is not restricted to repeats5,6,11–20. The absence or presence of 
5mC pathways and genomic patterns of 5mC in fungi has been posi-
tively correlated with the evolution of DNA repair mechanisms that 
correct its mutagenic properties9 and negatively correlated with N6-
methyladenine (6mA) of DNA25, respectively. However, to thoroughly 
test hypotheses for 5mC variation, genetic and epigenomic data from 
a diverse taxonomic sampling of fungal species is needed.

Here, we present a comprehensive analysis of 5mC across the 
fungal tree of life. Using phylogenetic approaches, we resolved the 
evolutionary history of 5mC pathways using a large sample of fungi: 
528 species/strains representing all phyla of Dikarya (Ascomycota 
(n = 167) and Basidiomycota (n = 125)) and ‘early-diverging 
fungi’ (Blastocladiomycota (n = 4), Chytridiomycota (n = 32), 

Cryptomycota (n = 1), Microsporidia (n = 24), Mucoromycota 
(n = 144) and Zoopagomycota (n = 30)) (Supplementary Table 1)11,12. 
We then compared the evolution of 5mC pathways with the largest  
and most taxonomically diverse fungal methylome dataset to date. 
This dataset included whole-genome bisulfite sequencing (WGBS)26,27 
from 27 novel and 13 reanalysed species6,14–20, which included 
both phyla of Dikarya (Ascomycota (n = 16) and Basidiomycota 
(n = 14)) and two phyla of early-diverging fungi (Mucoromycota 
(n = 7) and Zoopagomycota (n = 3)) (Supplementary Table 2 and 
http://epigenome.genetics.uga.edu/FungiMethylome/index.html)28. 
Methylome analysis revealed extensive variation of 5mC across 
fungi. Hence, within a phylogenetic framework, we tested hypothe-
ses to better explain this variation. Together, we present an extensive 
analysis of 5mC across the fungal tree of life.

Results and discussion
Evolution of 5mC MTases. Phylogenetic analysis revealed unique 
relationships among 5mC MTases in fungi. 5mC MTases group into 
two monophyletic superclades, which are composed of DNMT5, 
and DNMT1, DIM-2 and RID (Fig. 1a and Supplementary Fig. 1). 
Monophyly is also observed for 5mC MTases within the DIM-2, 
and RID superclade (Fig. 1a). However, within DNMT1, relation-
ships are paraphyletic (Fig. 1a). For example, the previously identi-
fied ‘DnmtX’ forms a monophyletic clade within the DNMT1 clade  
(Fig. 1a)29. Interestingly, the transfer RNAAsp methyltransferase 
(tRNA MTase) DNA METHYLTRANSFERASE 2 (DNMT2)30 is sis-
ter to DNMT5 (Fig. 1a). Finally, all fungal species investigated in this 
study lack the de novo 5mC MTase DNA METHYLTRANSFERASE 
3 (DNMT3)31, which suggests two independent gains in animals 
and plants, or a single loss in the ancestor of all fungi following the 
divergence from animals.
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To better understand 5mC MTase evolution within fungi and 
across eukaryotes, we performed an additional phylogenetic analysis 
on a subset of DNA methylase domain-containing proteins from ani-
mals (invertebrates and vertebrates), plants and fungi with prokaryotic 

sequences as an outgroup (Supplementary Fig. 2 and Supplementary 
Table 3). A single prokaryotic clade is sister to a clade containing 
DNMT1 and the plant orthologue METHYLTRANSFERASE 1, the 
plant-specific CHROMOMETHYLASE, DIM-2 and RID, and a clade 
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Fig. 1 | Evolution of 5mc MTases across fungi. a, Phylogenetic relationships of 5mC DNA and tRNA MTases of fungi. Values at selected nodes indicate 
posterior probability. Nodes with a star specify duplications, and the single node with a diamond specifies the clade containing ‘DnmtX’29. The area of each 
triangle corresponds to the number of taxa. Branch lengths are in units of amino acid substitutions per amino acid site. b, Proportion of species within 
subphyla of fungi with 5mC DNA and tRNA MTases. Empty circles indicate the evolution of DIM-2 and RID. Branch lengths of the species tree are in 
substitutions per site. The number of species within each subphylum investigated is given at the tips. c, Number of species for the observed combinations 
of 5mC MTases (5mC MTase genotypes). Set size corresponds to the number of MTase. Black dots joined by a line corresponds to the MTase genotype.
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containing DNMT3, DNMT5 and the plant-specific DOMAINS 
REARRANGED METHYLTRANSFERASE (Supplementary Fig. 2).  
This relationship suggests that a maintenance- and de novo-like  
5mC MTase occurred in the ancestor of all eukaryotes (Supplementary 
Fig. 2). Furthermore, DIM-2 and RID are derived in fungi, with  
RID evolving before DIM-2, rather than jointly, as suggested by the 
fungi exclusive phylogeny (Fig. 1a and Supplementary Fig. 2). The 
evolution of RID before DIM-2 is also supported by taxonomic  
relationships of subphyla (Fig. 1b). 5mC MTases are evolutionarily  
old and some have deep ancestry at the base of all eukaryotes  
and fungi.

Gene duplications and losses have shaped the evolution of 5mC 
MTases within and across fungi. Species-specific duplications of 
5mC (and tRNA) MTases and duplication events in the ancestor 
of early-diverging fungi and Dikarya are observed for DNMT2 
and DNMT1, respectively, and have increased copy numbers 

in many fungal species (Fig. 1a and Supplementary Table 1). 
Conversely, frequent losses of 5mC MTases have occurred dur-
ing fungal diversification (Fig. 1b). An example of extreme loss 
is observed in the subphylum Saccharomycotina, with all fungal 
species investigated being null for all 5mC (and tRNA) MTases 
(Fig. 1b). Furthermore, losses of all 5mC MTases are observed for 
Cryptomycota and Microsporidia.

The combination of 5mC MTases (the 5mC MTase genotype) is 
diverse in fungi. The highest diversity is observed in the Ascomycota 
(Fig. 1c, Supplementary Fig. 3 and Supplementary Table 4). The 
top three most frequent genotypes (disregarding the presence 
of DNMT2) across all fungi are DNMT1 + DNMT5 (n = 91), 
DIM-2 + DNMT5 + RID (n = 88) and DNMT1 (n = 68) (Fig. 1c and 
Supplementary Fig. 4). However, genotypes are not evenly distrib-
uted across the fungal phylogeny (Fig. 1c). Basidiomycetes predom-
inantly possess DNMT1 + DNMT5, ascomycetes predominantly 
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possess DIM-2 + DNMT5 + RID or DIM-2 + RID, and mucoromy-
cetes predominantly possess DNMT1. Interestingly, the possession 
of all possible 5mC MTases (DIM-2 + DNMT1 + DNMT5 + RID) 

is only observed in ascomycetes (Supplementary Table 1). 
Additionally, we did not observe species with all 5mC MTases and 
the tRNA MTase DNMT2 (Fig. 1c).
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Variation of 5mC across fungi. To explore the functional conse-
quences of differential 5mC MTase genotypes, we analysed WGBS 
data from 40 fungal species (Supplementary Table 2). 5mC lev-
els are on average highest in Basidiomycota compared with other 
phyla of fungi, regardless of genomic location and sequence context  
(Fig. 2a). Basidiomycota are biased towards the DNMT1 + DNMT5 
5mC MTase genotype; the 5mC MTase genotype is the top pre-
dictor of genomic CG methylation levels (Supplementary Fig. 5).  
Nevertheless, the 5mC MTase genotype is not always a predic-
tor of the 5mC level. For example, the ascomycetes Botrytis 
cinerea and Pseudogymnoascus destructans both possess the 
DIM-2 + DNMT1 + DNMT5 + RID genotype, but B. cinerea pos-
sesses insignificant levels of 5mC, whereas 5mC was abundant in 
P. destructans in the tissue type we sampled (Fig. 2a). Sequence 
and tissue-specific expression divergence of 5mC MTases between  
B. cinerea and P. destructans might explain the discrepancy between 
5mC MTase genotype and 5mC levels (Supplementary Fig. 6a). 
Additionally, some species appear devoid of 5mC when using 
genome-wide levels of 5mC; however, this does not capture local-
ized, high levels of 5mC that exist in certain species such as in 
Leptosphaeria maculans ‘brassicae’ (Supplementary Fig. 6b).

We observed three major sequence contexts that were targets of 
fungal 5mC MTases: (1) CG; (2) CH (where H is A, C or T); and 
(3) CN (C followed by any nucleotide). Context specificity varies 
between fungal species with or without similar genotypes, suggest-
ing convergent and divergent functions of 5mC MTases (Fig. 2b  
and Supplementary Fig. 7). Convergence is observed between 
P. destructans and the mucoromycete Phycomyces blakesleeanus; 
5mC MTase genotypes differ between species, but 5mC is biased 
towards the CG context with low levels of methylated CH and CN 
(Fig. 2b). However, 5mC MTase genotypes are not independent 
between P. destructans and P. blakesleeanus, and context specific-
ity could be driven by shared DNMT1 and/or DIM-2 (Fig. 2b). An 
example of divergence is observed in the ascomycetes N. crassa and 
Magnaporthe oryzae, which both possess the DIM-2 + RID geno-
type but preferentially methylate CTA and CAH sites, respectively.

Fungi lack canonical gene-body methylation. 5mC is not uni-
formly distributed across the genome in fungi. For example, lim-
ited 5mC occurs within coding regions (Fig. 3a and Supplementary 
Fig. 8). This is in contrast with CG DNA methylation enrichment in 
coding sequences of highly conserved and constitutively expressed 
genes in some species of insects and angiosperms (that is, gene-body 
methylation)1,5,6,32,33. An analogous enrichment has been reported in 
Uncinocarpus reesii at CH contexts6. Using an enrichment method1,34, 
we confirmed the results in U. reesii, and found other species with 
evidence of enrichment at the CG context (Supplementary Table 5).  
However, further inspection revealed this 5mC to not be confined 
to coding regions. Instead, we discovered that these genes with 
5mC enrichment were localized to long stretches of DNA meth-
ylation that spanned genes and intergenic sequences. Furthermore, 
CG-enriched genes in fungi do not exhibit the same normal-like 
distribution of CG methylation across the gene body as in plants 
and certain insect species (Fig. 3a and Supplementary Fig. 9). Genes 
are typically 5mC limited (that is, <1.0%) across the fungal species 
investigated, with only a small proportion of genes contributing to 
the majority of 5mC levels (Fig. 3b). Therefore, these data indicate 
that the canonical gene-body methylation found in other species is 
absent in fungi.

The exact role of genic 5mC in gene expression is debated. In 
angiosperms, genic CG methylation is associated with constitu-
tively expressed genes1,35,36. However, loss of CG methylation from 
gene bodies does not lead to steady-state changes to gene expres-
sion37. Non-CG (that is, CHG and CHH) methylation within genes 
of plants is typically associated with suppressed gene expression1.  

In insects, the association between genic methylated CG (mCG) lev-
els and gene expression is negligible38,39. The relationship between 
genic 5mC levels and gene expression in fungi is unknown. We 
tested the association between genic 5mC levels and gene expression 
in a subset fungal species investigated in this study. Typically, there 
is no relationship between genic 5mC levels and gene expression 
(Fig. 3c and Supplementary Fig. 10). However, in 9 of 26 fungal spe-
cies, the most highly 5mC methylated genes have the lowest levels 
of gene expression (for example, Heterobasidion irregulare, Laccaria 
bicolor and P. destructans). In contrast, one species, U. reesii, genic 
5mC levels are positively associated with gene expression (Fig. 3c 
and Supplementary Fig. 10). In most fungi investigated, genic 5mC 
potentially has no direct effect or suppresses gene expression.

5mC is enriched in repetitive DNA and transposons in fungal 
genomes. Levels of 5mC are typically highest in repetitive DNA 
and transposons of animals and plants5,6. As in animals and plants, 
5mC levels in the few fungal species investigated to date are high-
est in repetitive DNA and transposons5,6. This pattern typically 
holds true with our increased sampling of fungal diversity for 
WGBS (Fig. 4a). Similar to genes, transposable elements are typi-
cally 5mC limited across the fungal species investigated, with only 
a small proportion of these repeats contributing to the majority of 
5mC levels (Fig. 4b,c and Supplementary Fig. 11). Furthermore, as 
observed for levels of 5mC across the genome and within genes, 
some species with 5mC DNA MTases have negligible levels of 5mC 
within repetitive DNA and transposons (Fig. 4a–c). This discrep-
ancy between the presence of 5mC DNA MTases and absence of 
5mC might reflect developmental, tissue or cell-type-specific pat-
terns of this modified base.

Fungal genomes are punctuated with contiguous regions of 5mC. 
Many fungal species (n = 17) possess methylated cytosine clusters 
(MCCs; Fig. 5a)—long contiguous stretches of highly methylated 
cytosines (Fig. 4a and Supplementary Fig. 10). MCCs are not taxo-
nomically restricted and are found in fungal species belonging to 
Ascomycota, Basidiomycota, Mucoromycota and Zoopagomycota 
(Supplementary Fig. 12). MCCs are variable between fungal species 
for proportion of genome, length and 5mC level. The proportion 
of genome occupied by MCCs ranged from 0.04% (P. blakeslee-
anus) to 9.90% (Agaricus bisporus) (Supplementary Fig. 12).  
On average, MCCs occupied 3.03% of the genome, with a simi-
lar level of variation (s.d. = 3.12%). Large variation in the length 
(base pairs (bp)) of MCCs is also observed: a minimum length 
of 231 bp (Phanerochaete chrysosporium) and a maximum length 
of 142,150 bp (A. bisporus), with an average length of 7,517.91 bp 
and s.d. of 8,710.77 bp. Variation is less large for the 5mC level of 
MCCs: minimum = 1.44%; maximum = 61.11%; average = 20.55%; 
s.d. = 10.20%. MCCs also vary within a species for length and 5mC 
level, but some of this variation is dependent on their genomic loca-
tion (that is, chromosome arms, centromeres and telomeres) in at 
least Coprinopsis cinerea (Fig. 5b). Longer MCCs are, on average, 
found within the centromere regions, as opposed to arms and telo-
meres of chromosomes. However, 5mC levels of MCCs are identical 
regardless of their genomic location (Fig. 5b). As expected, repeti-
tive DNA and transposons are found in centromeric and telomeric 
MCCs, whereas genes are found in MCCs located in chromosome 
arms (Fig. 5c). However, a similar proportion of long terminal 
repeats (LTRs) are found in MCCs located in chromosome arms 
(Fig. 5c). Conservation of MCCs might be driven by the underlying 
genes; thus, genes within MCCs should be orthologous across fungi 
within these epigenomic features. However, genes within MCCs 
across fungal species are not orthologous as orthogroups are not 
shared among genes found within MCCs (Fig. 5d). Furthermore, 
Gene Ontology term enrichment suggests that genes within MCCs 
are functionally divergent (Supplementary Fig. 13). Hence, despite 
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MCCs being present in fungal species that are hundreds of millions 
of years diverged, they appear to be independently derived within 
each species.

Explanations for interspecific 5mC variation across fungi. What 
contributes to interspecific 5mC variation across fungi? Several 
hypotheses have been tested in animals and plants1,5,9, and our 
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dataset provides a unique opportunity to formally test hypotheses 
in fungi. One long-standing function for 5mC is its involvement in 
transcriptional silencing of transposons and other repeats40. Thus, 
transposon and repeat content should positively associate with levels 
of 5mC. We found repeat content to be a predictor of 5mC in fungi 
(Supplementary Figs. 5 and 14). Significantly, it positively correlates 
with genome-wide CG methylation levels, with DNA transposon 
and LTR content as major contributors (Fig. 6a). Overall, repeat 
content partially explains interspecific 5mC variation between fun-
gal species, and supports a role for 5mC in genome defence.

5mC is mutagenic and causes spontaneous deamination of 
methylated cytosines to thymines and alkylation damage41,42. 
ALPHA-KETOGLUTARATE-DEPENDENT DIOXYGENASE 2 
and 3 (ALKBH2 and ALKBH3, respectively) are the only members 
of the ALKBH family that repair DNA alkylation damage intro-
duced by 5mC41,42, and have been observed to associate with DNA 
MTases in some eukaryotes8. If ALKBH2 and ALKBH3 coevolved 
(Supplementary Fig. 15 and Supplementary Table 6) to offset the 
negative mutational effect of 5mC, we would expect these enzymes 
to coevolve with pathways of 5mC, but negatively correlate with  

levels of 5mC. Only DNMT5 significantly correlated with ALKBH2 
when controlling for non-independence of species (Supplementary 
Table 7). Levels of 5mC positively correlated with ALKBH2, but not 
significantly (Fig. 6b and Supplementary Table 9). In contrast, levels 
of 5mC significantly negatively correlated with ALKBH3 (Fig. 6b 
and Supplementary Table 8)—that is, fungi with ALKBH3 tend to 
have lower levels of 5mC compared with species without ALKBH3. 
Hence, ALKBH2 and ALKBH3 might be necessary for offsetting the 
mutational and damaging effect of 5mC. However, counteracting 
the negative effects of 5mC might be more essential for some fun-
gal species over others—specifically, those fungal species with high 
levels of 5mC within coding regions, as mutations could disrupt 
protein function.

The evolutionary relationship between base modifications is 
poorly understood. A negative relationship between 5mC and 6mA 
has been reported and proposed to be the consequence of overlap-
ping gene-regulatory functional properties25. We explored the rela-
tionship between 5mC and 6mA by testing for coevolution between 
the presence of 5mC MTases and absence of 6mA DNA and RNA 
MTases (Supplementary Fig. 16 and Supplementary Tables 9–11). 
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N6AMT1 is responsible for 6mA DNA methylation in humans43. 
However, this 6mA DNA MTase is found ubiquitously across fungi 
and is present in approximately 86.84 and 60.20% of early-diverging 
fungi and Dikarya, respectively (Fig. 6c). Similarly, we observed the 
presence of a potential 6mA DNA MTase (METHYTRANSFERASE-
LIKE 4 (METTL4)/DNA N6-METHYL METHYLTRANSFERASE 
(DAMT-1)) in many fungal species belonging to the Ascomycota, 
Chytridiomycota, Mucoromycota and Zoopagomycota (Fig. 6c). 
However, METTL4/DAMT-1 was lacking from the majority of 
Basidiomycota (Fig. 6c). With that said, METTL4/DAMT-1 is pres-
ent in approximately 47.37% of early-diverging fungi and 53.29% of 
Dikarya. Other potential 6mA DNA MTases—N-6 DNA Methylase 
(PF02384) domain-containing proteins—were less abundant in the 
species we sampled (Fig. 6c and Supplementary Table 9). Across 
the fungal species investigated, the coevolution between the pres-
ence of 5mC MTases and absence of 6mA MTases was only sup-
ported for N6AMT1 (Supplementary Table 7). Specifically, there is 
a higher rate of losing (9.864) than gaining (1.091) 5mC MTases 
when N6AMT1 is present. We observed significant positive 
and negative relationships between 5mC MTases and METTL4/
DAMT-1 in Ascomycota and Basidiomycota, respectively (Fig. 6c 
and Supplementary Table 8). Furthermore, a negative relationship 
between METTL4/DAMT-1 and the potential 6mA RNA MTases 
METHYTRANSFERASE-LIKE 3 and METHYTRANSFERASE-
LIKE 14 was observed in both Ascomycota and Basidiomycota. 
However, this relationship is only significant in the Ascomycota 
(Fig. 6c and Supplementary Table 7). The resolution of epigenomic 
conflict that could arise through modified bases with overlapping 
regulatory functions appears to be more important in some groups 
of fungi over others.

conclusions
Our results identified widespread 5mC variation across the fungal 
tree of life. 5mC is more associated with the DNMT1 + DNMT5 
MTase genotype (and thus Basidiomycota) than other genotypes 
and phyla. Unlike animals and plants, fungi lack canonical gene-
body methylation. Consequently, negligible relationships between 
genic 5mC levels and gene expression are typically observed. 
However, as in animals and plants, 5mC is present at high levels in 
repetitive DNA and transposons, which probably reflects a shared 
mechanism of genome defence. We discovered that 43% of fungal 
species investigated possess unique methylated clusters (MCCs), 
potentially reaching up to hundreds of kilobase pairs in length. We 
propose that interspecific 5mC variation is the complex combina-
tion of 5mC MTase genotype and genome evolution, and in some 
cases the mitigation of 5mC’s negative effects on sequence changes 
and the distinction of functional roles to other modified bases. 
However, additional traits might contribute to interspecific 5mC 
variation in at least fungi44. Future functional studies controlling 
for genomic background will elucidate the role of 5mC in fungi. 
We have added valuable phylogenetic and taxonomic sampling to 
the field of comparative epigenomics, as well as unified multiple 
hypotheses for the explanation of interspecific levels and patterns 
of 5mC variation.

Methods
Phylogenetics. To identify and resolve the relationships of 5mC DNA and tRNA 
MTases, we first identified annotated proteins containing a DNA methylase domain 
(Pfam domain PF00145), using InterProScan version 5.23–62.0 (ref. 45), from 
528 fungi species/strains. DNA methylase domain-containing proteins were also 
identified from 37 Animalia, 37 Bacteria and 22 Plantae species (Supplementary 
Table 3). DNA methylase domains of ≥200 amino acids were then extracted from 
the protein sequences using the coordinates provided by InterProScan version 
5.23–62.0 (ref. 45) and aligned using PASTA version 1.6.4 (ref. 46). We limited 
sequences to the DNA methylase domain due to the deep divergence times of 
species, and thus sequence divergence outside of protein functional domains. 
Phylogenetic relationships among DNA methylase domain-containing sequences 
were estimated using BEAST version 2.3.2 (ref. 47) with a Blosum62 + Γ model 

of amino acid substitution. Markov chain Monte Carlo sampling was run until 
stationarity and convergence were reached. Subsequently, an appropriate burn 
in was used before summarizing the posterior distribution of tree topologies. A 
consensus tree was generated using TreeAnnotator version 2.3.2, visualized in 
FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) and exported for 
stylization in Affinity Designer version 1.5.1 (https://affinity.serif.com/en-us/). 
5mC DNA and tRNA MTase clades were assigned based on the placement of 
previously described methyltransferases in Cryptococcus neoformans var. grubii 
H99 and N. crassa, best BLASTp hits to Mus musculus, and overall protein domain 
structure. DNA methylase domain-containing sequences not used in the phylogeny 
were assigned to a clade through the best BLASTp hit to sequences assigned to a 
clade in the phylogeny.

The same methods as those described above were used to identify and resolve 
the relationships of ALKBHs, with minor differences. The number of fungal 
species included was restricted to those with WGBS. Furthermore, 35 Chordata 
from Ensembl (http://ensembl.org; Anolis carolinensis, Astyanax mexicanus, 
Anas platyrhynchos, Canis familiaris, Choloepus hoffmanni, Ciona intestinalis, 
Danio rerio, Dasypus novemcinctus, Equus caballus, Echinops telfairi, Gasterosteus 
aculeatus, Gallus gallus, Gadus morhua, Latimeria chalumnae, Loxodonta africana, 
Lepisosteus oculatus, Notamacropus eugenii, Myotis lucifugus, Monodelphis 
domestica, M. musculus, Ornithorhynchus anatinus, Ovis aries, Oryctolagus 
cuniculus, Oreochromis niloticus, Oryzias latipes, Homo sapiens, Procavia capensis, 
Petromyzon marinus, Pelodiscus sinensis, Sorex araneus, Sarcophilus harrisii, 
Taeniopygia guttata, Takifugu rubripes, Xenopus tropicalis and Xiphophorus 
maculatus) and 15 Nematoda from WormBase (http://www.wormbase.org; Ascaris 
suum, Brugia malayi, Caenorhabditis briggsae, Caenorhabditis elegans, Dirofilaria 
immitis, Globodera pallida, Loa loa, Meloidogyne hapla, Meloidogyne incognita, 
Onchocerca volvulus, Panagrellus redivivus, Pristionchus pacificus, Romanomermis 
culicivorax, Trichinella spiralis and Trichuris muris) were included. Annotated 
proteins containing a 2OG-Fe(ii) oxygenase superfamily domain (Pfam domain 
PF13532) were identified using InterProScan version 5.23–62.0 (refs. 43,45). The 
2OG-Fe(ii) oxygenase superfamily domain was extracted and subsequently used 
to estimate phylogenetic relationships of ALKBHs. ALKBH clades were assigned 
based on the placement of H. sapiens sequences (Supplementary Fig. 15 and 
Supplementary Table 6).

The same methods as those described for 5mC DNA and tRNA MTases were 
used to identify potential 6mA DNA and RNA MTases from a set of 342 fungal 
species, with some exceptions. Functional studies on 6mA DNA and RNA MTases 
are non-existent in fungi; thus, we focused on annotated proteins containing 
the methyltransferase small domain (PF05175), N-6 DNA Methylase domain 
(PF02384) and MT–A70 domain (PF05063). Functional work on N6AMT1—a 
methyltransferase small domain-containing protein—demonstrated this protein 
as the 6mA DNA MTase in humans43. Functionally tested and putative 6mA DNA 
and RNA MTase proteins were identified using InterProScan version 5.23–62.0 
(ref. 45). METTLs were also assigned to specific clades using the same phylogenetic 
methods as those described for 5mC DNA and tRNA MTases. The locations of M. 
musculus METTL proteins were used to assign clades in Supplementary Fig. 16.

A set of 434 conserved protein-coding genes (labelled as JGI_1086) was 
developed (https://github.com/1KFG/Phylogenomics_HMMs) and searched 
against proteomes of target species using PHYling (https://github.com/stajichlab/
PHYling_unified). Briefly, PHYling searches for top hits for each conserved 
marker using hmmsearch (HMMER version 3.1b2; http://hmmer.org)48 above 
a minimum e-value threshold (<1.0 × 10−30) in each species proteome. The best 
hits from each species for each marker are aligned as a multiple alignment using 
hmmalign (HMMER version 3.1b2) followed by trimmimg with trimal using the 
-automated1 parameter. The trimmed marker alignments were concatenated into 
a single super alignment, and the phylogenetic tree was inferred under maximum 
likelihood (RAxML version 8.2.8; ref. 49) using automated bootstrapping, which 
converged after 50 bootstrap replicates (arguments: -f a -m PROTGAMMAAUTO 
-N autoMRE).

Stochastic character mapping. A stochastic mutational map was used to estimate 
the ancestral state at each node, the occurrence and timing of different states, and 
the timing of changes of 5mC MTase genotypes along the multilocus coalescent 
tree. Before stochastic mutational mapping, the multilocus coalescent species tree 
was converted to a chronogram using the most preferred model of substitution 
rate variation among branches (relaxed) based on the Akaike information criterion 
using the chronos function in the R package ape version 5.0 (refs. 50,51). Stochastic 
mutational mapping with 1,000 simulations was implemented in the R package 
phytools version 0.6.44 (ref. 53). A transition matrix was used, allowing for an equal 
rate of gain and loss of genotypes.

WGBS and methylation analyses. MethylC-Seq libraries for newly sequenced 
fungal species were prepared according to a protocol described previously27 
(Supplementary Table 2). Libraries were single-end 75- or 150-bp sequenced 
on an Illumina NextSeq 500 machine. Unmethylated lambda phage DNA or a 
mitochondrial genome was used as a control for sodium bisulfite conversion. 
The non-conversion error rate ranged from 0.30–0.11%, with an average rate of 
0.16% (s.d. = 0.04%) (Supplementary Table 2). WGBS data were aligned to each 
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species’ respective genome assembly11,23,52,54–78 using the methylpy pipeline79. In 
brief, reads were trimmed of sequencing adaptors using Cutadapt80, then mapped 
to both a converted forward strand (cytosines to thymines) and a converted 
reverse strand (guanines to adenines) using Bowtie version 1.1.1 (ref. 81). Reads 
that mapped to multiple locations, as well as clonal reads, were removed. Mapped 
sequencing coverage ranged from 4.28× to 51.32×, with an average and standard 
deviation of 19.01× and 11.36×, respectively (Supplementary Table 2). WGBS 
data for all newly sequenced species are located in the Gene Expression Omnibus 
under accession GSE112636. Previously published WGBS data for Aspergillus 
flavus14, Cordyceps militaris18, C. neoformans var. grubii H99 (ref. 15), L. bicolor6, 
M. oryzae16, Metarhizium robertsii20, N. crassa19, P. blakesleeanus6, Postia placenta6, 
Saccharomyces cerevisiae17 and U. reesii6 were downloaded from the Short Read 
Archive (SRA) using the accessions listed in Supplementary Table 2, and aligned 
the same way as described above using the corresponding genome assembly82–93.

Weighted DNA methylation was calculated for CG, CH and CN sites by 
dividing the total number of aligned methylated reads by the total number of 
methylated plus unmethylated reads94. For genic and repeat metaplots, the locus 
body (start to stop codon) 1,000 bp upstream and 1,000 bp downstream was 
divided into 20 proportional windows based on the sequence length (bp). Weighted 
DNA methylation was calculated for each window, then plotted in R version 
3.3.3 (https://www.r-project.org/). CG and CH sequence context enrichment for 
each gene was determined through a binomial test followed by the Benjamini–
Hochberg false discovery rate method1,34. A background methylation level for 
CG and CH sites was determined from all coding sequences, which was used as a 
threshold in determining significance with a false discovery rate correction. Genes 
were classified as CG or CH methylated if they had reads mapping to at least 20 
methylated sites, with each being sequenced 3×, as well as a q value ≤ 0.05 for the 
context of interest and a q value > 0.05 for the alternative context.

Methylated clusters were identified using a similar method to that described 
by Huff and Zilberman15. First, methylated regions were constructed by defining 
contiguous runs of cytosines that passed the binomial test from species with 5mC 
MTases. Methylated clusters were then defined by fusing methylated regions 
that were ≤1,000 bp apart and contained ≥100 methylated cytosines. Methylated 
cytosines at the CG sequence context were only considered for A. flavus, C. 
neoformans var. grubii H99 and M. robertsii. Methylated clusters were identified 
in A. bisporus, Coemansia reversa, C. cinerea, C. neoformans var. grubii H99, 
H. irregulare, L. bicolor, Microbotryum lychnidis A1, P. chrysosporium, Pholiota 
alnicola, P. blakesleeanus, Pleurotus ostreatus, P. placenta, P. destructans, Radiomyces 
spectabilis, Sporobolomyces roseus, U. reesii and Wolfiporia cocos.

Gene Ontology term enrichment. Gene Ontology term enrichment was 
performed using Fisher’s exact test implemented in the topGO Bioconductor 
module in R95. Gene Ontology terms were considered significant at P < 0.05.

RNA sequencing (RNA-Seq) and expression analyses. RNA-Seq libraries for 
A. bisporus (SRR5674591), A. flavus (SRR1929577), Aureobasidium pullulans 
(SRR5145578), B. cinerea (SRR5043510, SRR5043508, SRR5040577, SRR5040575, 
SRR5040545, SRR5040544, SRR5040539, SRR5040538, SRR5040513, SRR5040512, 
SRR5040511, SRR5040508, SRR5040506, SRR5040505, SRR6924547, SRR6924548 
and SRR6924549), C. cinerea (ERR364317), C. militaris (SRR6252299), C. 
neoformans (SRR6508020), Heterobasidion annosum (SRR1797364), L. bicolor 
(SRR1752511), L. maculans ‘brassicae’ (SRR1151407), M. oryzae (SRR1015598), 
M. robertsii (SRR5282563), M. lychnidis (SRR3624826), N. crassa (SRR2952639), 
P. chrysosporium (SRR7513038), P. alnicola (SRR5501210), P. blakesleeanus 
(SRR5141341), P. ostreatus (SRR6986513), Podospora anserina (SRR6974635), 
P. placenta (SRR3929446), P. destructans (SRR5770104, SRR5770108 and 
SRR5770109), R. spectabilis (SRR6047893), Spinellus fusiger (SRR6053269), 
Tilletiopsis washingtonensis (SRR4125823), U. reesii (SRR042534) and W. cocos 
(SRR7144104) were downloaded from the SRA. B. cinerea libraries were generated 
from multiple tissues (ascospores, the apothecium disk, apothecium stipes, 
apothecium primordia, sclerotia and mycelia).

Raw RNA-Seq FASTQ reads were trimmed for adaptors and preprocessed 
to remove low-quality reads using Trimmomatic version 0.33 (arguments: 
TruSeq2-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36)96 before mapping. Reads were mapped using HISAT2 version 2.1.0 
(ref. 97) supplied with a reference general transfer format (arguments: defaults). 
Following mapping, RNA-Seq alignments were assembled into potential transcripts 
using StringTie version 1.3.3b97 (arguments: defaults). The mean and standard 
error of the mean fragments per kilobase of transcript per million mapped reads 
were calculated across libraries from the same species and tissue type.

Phylogenetic comparative methods. Two tests of correlated evolution were 
conducted: (1) phylogenetic generalized least squares (PGLS) analysis98,99 and 
(2) Pagel’s method100. PGLS is used to test relationships between two (or more) 
variables while accounting for non-independence of lineages in a phylogeny. The 
method is a special case of generalized least squares. PGLS was used to correlate 
continuous estimates of genome-wide CG methylation with continuous estimates 
of repeat content and discrete estimates (absence versus presence) of ALKBHs. 
Pagel’s method is similar to PGLS in that it accounts for non-independence 

of lineages. However, Pagel’s method uses a continuous-time Markov model 
to simultaneously estimate transition rates in pairs of binary characters on a 
phylogeny. These rates are then used to test whether a dependent or independent 
model of evolution is preferred using the likelihood ratio test. Pagel’s method was 
used to test for a relationship between the absence or presence of 5mC MTases  
and the absence or presence of ALKBHs and METTLs, and between the absence  
or presence of ALKBHs and the absence or presence of DNA methylation. Both 
tests were implemented in the R package phytools version 0.6.44 (ref. 53), and  
the multilocus coalescent species tree was used to account for non-independence 
of species.

Repeat annotations. REPET version 2.5 (ref. 101) was used identify repetitive 
content and classify conserved and novel repeat elements. These included de novo 
identification of repeats combined with searches of curated sets from RepBase102. A 
set of scripts was developed to run these analyses on the University of California, 
Riverside High-Performance Computing Center cluster (https://github.com/
stajichlab/REPET-slurm/). These repeats were classified by matches to RepBase 
to generate most likely transposable element superfamily categories. The de novo, 
classified repeats were searched back against each genome to derive a map of repeat 
element locations for the examination of gene and 5mC contexts.

RIP in N. crassa mutates C to T at preferentially CA dinucleotides21. Hence, 
the frequencies of CA and TA relative to the frequencies of control dinucleotides 
identify loci that have been subjected to RIP. Specifically, loci with values of the 
RIP product index (TA/AT) greater than 1.1 and less than 0.9 for the RIP substrate 
index (CA + TG/AC + GT) have been subjected to RIP. In contrast, non-mutated 
loci exhibit values less than 0.8 and greater than 1.1 for RIP product and substrate 
indices, respectively13,103. A composite RIP index can be determined by subtracting 
the substrate index from the product index; thus, a positive composite RIP index 
value implies that the locus has been subjected to RIP104. We applied these indices 
to 500-bp non-overlapping windows for the genome assemblies of the fungal 
species listed in Supplementary Table 2. Windows were collapsed into a single 
locus if neighbouring windows on the same molecule exhibited RIP mutated or 
non-mutated index values.

Random forest. We used an ensemble learning method (random forest) analysis 
to identify variables that best predict levels of genome-wide CG methylation 
(response variable). The predictor variables tested included both genomic and 
ecological traits. The number of decision trees was set to 10,000, and 5 variables 
were randomly sampled as candidates at each split. These values were set as 
they reduce the amount of error. Assessment of the importance of predictors 
was based on the increasing mean squared error (%IncMSE) and Gini index 
(%IncNodePurity). Random forest analysis was implemented in the R package 
randomForest version 4.6.12 (ref. 105).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome assemblies and gene annotations are available via the URL links  
listed in Supplementary Table 2. Gene Expression Omnibus and SRA accessions for 
RNA-Seq and WGBS data generated and used in this study are provided  
in the Methods.
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