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Coordinate Systems 
 
 
B.1 Cartesian Coordinates 
 
A coordinate system consists of four basic elements: 
 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors for each axis 

 

We illustrate these elements below using Cartesian coordinates. 
 
(1) Choice of Origin 
 
Choose an originO . If you are given an object, then your choice of origin may coincide 
with a special point in the body. For example, you may choose the mid-point of a straight 
piece of wire.  
 
(2) Choice of Axis 
 
Now we shall choose a set of axes. The simplest set of axes are known as the Cartesian 
axes, -axis, -axis, and the -axis. Once again, we adapt our choices to the physical 
object. For example, we select the -axis so that the wire lies on the -axis, as shown in 
Figure B.1.1: 

x y z
x x

 

 
 

Figure B.1.1 A wire lying along the x-axis of Cartesian coordinates. 
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Then each point  in space our P S can be assigned a triplet of values (xP, yP,zP ), the 
Cartesian coordinates of the point .  The ranges of these values are: −∞P < xP < +∞ , 
−∞ < yP < +∞, −∞ < zP < +∞ .  
 
The collection of points that have the same the coordinate Py  is called a level surface.  
Suppose we ask what collection of points in our space S have the same value of Py y= . 
This is the set of points { }( , , ) such that

Py PS x y z S y y= ∈ = . This set 
PyS  is a plane, the 

plane (Figure B.1.2), called a level set for constant-x z Py . Thus, the -coordinate of any 
point actually describes a plane of points perpendicular to the 

y
y -axis. 

 

 
Figure B.1.2 Level surface set for constant value Py . 

 
(3) Choice of Positive Direction 
 
Our third choice is an assignment of positive direction for each coordinate axis. We shall 
denote this choice by the symbol + along the positive axis. Conventionally, Cartesian 
coordinates are drawn with the -x y plane corresponding to the plane of the paper. The 
horizontal direction from left to right is taken as the positive -axis, and the vertical 
direction from bottom to top is taken as the positive -axis. In physics problems we are 
free to choose our axes and positive directions any way that we decide best fits a given 
problem. Problems that are very difficult using the conventional choices may turn out to 
be much easier to solve by making a thoughtful choice of axes. The endpoints of the wire 
now have the coordinates and 

x
y

( / 2,0,0)a ( / 2,0,0)a− . 
 
(4) Choice of Unit Vectors 
 
We now associate to each point  in space, a set of three unit directions vectors 

.  A unit vector has magnitude one: 
P

( P P P
ˆ ˆ ˆ, ,i j k ) 1P

ˆ =i , 1P
ˆ =j , and 1P

ˆ =k . We 

assign the direction of  to point in the direction of the increasing -coordinate at the Pî x
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point P . We define the directions for Pĵ  and  in the direction of the increasing -
coordinate and -coordinate respectively. (Figure B.1.3). 

Pk̂ y
z

 

 
 

Figure B.1.3 Choice of unit vectors. 
 

B.1.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s between two points P1 and P2 (Figure 
B.1.4). In Cartesian coordinates this vector can be decomposed into  
 
 ˆ ˆ ˆd dx dy dz= + +s i j k  (B.1.1) 

 

 
 

Figure B.1.4 Displacement between two points 
 

B.1.2 Infinitesimal Area Element 
 
An infinitesimal area element of the surface of a small cube (Figure B.1.5) is given by 
 
 ( )( )dA dx dy=  (B.1.2) 
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Figure B.1.5 Area element for one face of a small cube 
 
Area elements are actually vectors where the direction of the vector  is perpendicular 
to the plane defined by the area. Since there is a choice of direction, we shall choose the 
area vector to always point outwards from a closed surface, defined by the right-hand 
rule. So for the above, the infinitesimal area vector is 

dA

 
 ˆd dx dy=A k  (B.1.3) 
 

B.1.3 Infinitesimal Volume Element  
 
An infinitesimal volume element (Figure B.1.6) in Cartesian coordinates is given by 
 
 dV dx dy dz=  (B.1.4) 
 

 
Figure B.1.6 Volume element in Cartesian coordinates. 

 
B.2 Cylindrical Coordinates 
 
We first choose an origin and an axis we call the -axis with unit vector  pointing in 
the increasing z-direction. The level surface of points such that 

z ẑ
Pz z=  define a plane. 

We shall choose coordinates for a point in the plane P Pz z= as follows.  
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The coordinate ρ measures the distance from the -axis to the point . Its value ranges 
from 

z P
0 ρ≤ < ∞ . In Figure B.2.1 we draw a few contours that have constant values of ρ . 

These “level contours” are circles. On the other hand, if z were not restricted to Pz z= , 
as in Figure B.2.1, the level surfaces for constant values of ρ  would be cylinders coaxial 
with the z-axis. 
 

 
 

Figure B.2.1 Level surfaces for the coordinate ρ . 
 
Our second coordinate measures an angular distance along the circle. We need to choose 
some reference point to define the angular coordinate. We choose a “reference ray,” a 
horizontal ray starting from the origin and extending to +∞  along the horizontal 
direction to the right. (In a typical Cartesian coordinate system, our reference ray is the 
positive x-direction). We define the angle coordinate for the point  as follows. We 
draw a ray from the origin to . We define

P
P φ  as the angle in the counterclockwise 

direction between our horizontal reference ray and the ray from the origin to the point 
, (see Figure B.2.2): P

 

 
 

Figure B.2.2 The angular coordinate 
 
All the other points that lie on a ray from the origin to infinity passing through  have 
the same value of 

P
φ . For any arbitrary point, φ  can take on values from 0 2φ π≤ < .  

In Figure B.2.3 we depict other “level surfaces” for the angular coordinate.  
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Figure B.2.3 Level surfaces for the angle coordinate. 

 
The coordinates ( , )ρ φ  in the plane Pz z=  are called plane polar coordinates. We 
choose two unit vectors in the plane at the point  as follows. We choose  to point in 
the direction of increasing 

P ρ̂
ρ , radially away from the z-axis. We choose  to point in 

the direction of increasing
φ̂

φ . This unit vector points in the counterclockwise direction, 
tangent to the circle. Our complete coordinate system is shown in Figure B.2.4. This 
coordinate system is called a “cylindrical coordinate system.” Essentially we have chosen 
two directions, radial and tangential in the plane and a perpendicular direction to the 
plane. 

 
Figure B.2.4 Cylindrical coordinates 

  
When referring to any arbitrary point in the plane, we write the unit vectors as  and , 
keeping in mind that they may change in direction as we move around the plane, keeping 

unchanged. If we need to make a reference to this time changing property, we will 
write the unit vectors as explicit functions of time,  and .  

ρ̂ φ̂

ẑ
ˆ( )tρ ˆ ( )tφ

 
If you are given polar coordinates ( , )ρ φ  of a point in the plane, the Cartesian 
coordinates ( , )x y can be determined from the coordinate transformations: 
 
 cos , sinx yρ φ ρ φ= =  (B.2.1) 
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Conversely, if you are given the Cartesian coordinates ( , )x y , the polar coordinates 
( , )ρ φ  may be represented as 
 
 2 2 1 2 1( ) , tan ( / )x yρ φ −= + + = y x  (B.2.2) 
 
 
Note that 0ρ ≥ so you always need to take the positive square root. Note also that 
tan tan( )φ φ π= + . Suppose that 0 2φ π≤ ≤ , then  and . Then the point 0x ≥ 0y ≥
( , )x y− − will correspond to the angle φ π+ . 
 
The unit vectors also are related by the coordinate transformations  
 
 ˆ ˆ ˆˆ ˆcos sin , sin cos ˆφ φ φ= + = − +ρ i j φ i φ j

ˆ

 (B.2.3) 
 
Similarly,  
 
 ˆ ˆˆ ˆ ˆcos sin , sin cosφ φ φ= − = +i ρ φ j ρ φ φ

2

 (B.2.4) 
 
The crucial difference between cylindrical coordinates and Cartesian coordinates 
involves the choice of unit vectors.  Suppose we consider a different point  in the 

plane. The unit vectors in Cartesian coordinates  at the point  have the same 

magnitude and point in the same direction as the unit vectors  at . Any two 
vectors that are equal in magnitude and point in the same direction are equal; therefore  

1P

1 1
ˆ ˆ( , )i j 1P

2 2
ˆ ˆ( , )i j 2P

 
 1 2 1

ˆ ˆ ˆ ˆ,= =i i j j  (B.2.5) 
 

A Cartesian coordinate system is the unique coordinate system in which the set of unit 
vectors at different points in space are equal.  In polar coordinates, the unit vectors at 
two different points are not equal because they point in different directions. We show this 
in Figure B.2.5. 

 
 

Figure B.2.5 Unit vectors at two different points in polar coordinates.  
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B.2.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s  between two points P1 and P2 (Figure 
B.2.6). This vector can be decomposed into  
 

 
Figure B.2.6 displacement vector d s  between two points 

 
 ˆˆ ˆd d d dzρ ρ φ= + +s ρ φ k  (B.2.6) 
 

B.2.2 Infinitesimal Area Element 
 
Consider an infinitesimal area element on the surface of a cylinder of radius ρ  (Figure 
B.2.7).  

 
 

Figure B.2.7 Area element for a cylinder 
 
The area of this element has magnitude 
 
 dA d dzρ φ=  (B.2.7) 
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Area elements are actually vectors where the direction of the vector  points 
perpendicular to the plane defined by the area. Since there is a choice of direction, we 
shall choose the area vector to always point outwards from a closed surface. So for the 
surface of the cylinder, the infinitesimal area vector is 

dA

 
 ˆd d dzρ φ=A ρ  (B.2.8) 
 
Consider an infinitesimal area element on the surface of a disc (Figure B.2.8) in the 

-x y plane.  

 
 

Figure B.2.8 Area element for a disc. 
 
This area element is given by the vector 
 
 ˆd d dρ φ ρ=A k  (B.2.9) 
 

B.2.3 Infinitesimal Volume Element  
 
An infinitesimal volume element (Figure B.2.9) is given by 
 
 dV d d dzρ φ ρ=  (B.2.10) 
 

 
 

Figure B.2.9 Volume element for a cylinder. 
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B.3 Spherical Coordinates 
 
We first choose an origin. Then we choose a coordinate, , that measures the radial 
distance from the origin to the point . The coordinate  ranges in value from 

. The set of points that have constant value for  are spheres (“level 
surfaces”).  

r
P r

0 r≤ < ∞ r

  
Any point on the sphere can be defined by two angles ( , )θ φ and r. We will define these 
angles with respect to a choice of Cartesian coordinates ( , , )x y z . The angle θ  is defined 
to be the angle between the positive -axis and the ray from the origin to the point . 
Note that the values of 

z P
θ  only range from 0 θ π≤ ≤ . The angle φ  is defined (in a 

similar fashion to polar coordinates) as the angle in the between the positive -axis and 
the projection in the 

x
-x y  plane of the ray from the origin to the point . The coordinate 

angle 
P

φ  can take on values from 0 2φ π≤ < . 
  
The spherical coordinates ( , , )r θ φ for the point  are shown in Figure B.3.1. We choose 
the unit vectors  at the point  as follows. Let  point radially away from the 
origin, and  point tangent to a circle in the positive

P
ˆˆ ˆ( , , )r θ φ P r̂

θ̂ θ  direction in the plane formed by 
the -axis and the ray from the origin to the point . Note that  points in the 
direction of increasing 

z P θ̂
θ . We choose  to point in the direction of increasingφ̂ φ . This 

unit vector points tangent to a circle in the xy − plane centered on the -axis. These unit 
vectors are also shown in Figure B.3.1. 

z

 

 
Figure B.3.1 Spherical coordinates 

   
If you are given spherical coordinates ( , , )r θ φ  of a point in the plane, the Cartesian 
coordinates ( , , )x y z can be determined from the coordinate transformations 
 

 
sin cos
sin sin
cos

x r
y r
z r

θ φ
θ φ
θ

=
=
=

 (B.3.1) 
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Conversely, if you are given the Cartesian coordinates ( , , )x y z , the spherical coordinates 
( , , )r θ φ  can be determined from the coordinate transformations 
 

 

2 2 2 1 2

1
2 2 2 1 2

1

( )

cos
( )

tan ( )

r x y z

z
x y z

y x

θ

φ

−

−

= + + +

⎛ ⎞
= ⎜ + +⎝ ⎠
=

⎟  (B.3.2) 

 
 
The unit vectors also are related by the coordinate transformations  
  

 

ˆ ˆ ˆˆ sin cos sin sin cos
ˆ ˆ ˆ ˆcos cos cos sin sin

ˆ ˆˆ sin cos

θ φ θ φ θ

θ φ θ φ θ

φ φ

= + +

= + −

= − +

r i j k

θ i j k

φ i j

 (B.3.3) 

 
These results can be understood by considering the projection of  into the unit 
vectors , where  is the unit vector from cylindrical coordinates (Figure B.3.2), 

ˆˆ( , )r θ
ˆˆ( , )ρ k ρ̂

 
 

 
 

Figure B.3.2 Cylindrical and spherical unit vectors 
 

 
ˆˆ ˆsin cos

ˆ ˆˆcos sin

θ θ

θ θ

= +

= −

r ρ k

θ ρ k
 (B.3.4) 

 
We can use the vector decomposition of  into the Cartesian unit vectors : ρ̂ ˆ ˆ( , )i j
 
 ˆˆ cos sin ˆφ φ= +ρ i j  (B.3.5) 
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To find the inverse transformations we can use the fact that  
 
 ˆˆ ˆsin cosθ θ= +ρ r θ  (B.3.6) 
 
to express 

 
ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos

φ φ

φ φ

= −

= +

i ρ φ

j ρ φ
 (B.3.7) 

 
 
as  

 
ˆ ˆˆ ˆcos sin cos cos sin
ˆ ˆˆ ˆsin sin sin cos cos

φ θ φ θ φ

φ θ φ θ φ

= + −

= + +

i r θ φ

j r θ φ
 (B.3.8) 

 
The unit vector can be decomposed directly into with the result that  k̂ ˆˆ( , )r θ
 
 ˆˆ ˆcos sinθ θ= −k r θ   (B.3.9) 
 

B.3.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s  between two points (Figure B.3.3). This 
vector can be decomposed into  
 
 ˆˆ sind dr rd r d= + +s r θ φ̂θ θ φ  (B.3.10) 
 

 
 

Figure B.3.3 Infinitesimal displacement vector d s . 
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B.3.2 Infinitesimal Area Element  
 
Consider an infinitesimal area element on the surface of a sphere of radius  (Figure 
B.3.4).  

r

 

 
Figure B.3.4 Area element for a sphere. 

 
The area of this element has magnitude 
 
 2( )( sin ) sindA rd r d r d d= =θ θ φ θ θ φ  (B.3.11) 
 
points in the radially direction (outward from the surface of the sphere). So for the 
surface of the sphere, the infinitesimal area vector is 
 
 2 ˆsind r d dθ θ φ=A r  (B.3.12) 
 

B.3.3 Infinitesimal Volume Element 
 
An infinitesimal volume element (Figure B.3.5) is given by 
 
 2 sindV r d d drθ θ φ=  (B.3.13) 
 

 
Figure B.3.5 Infinitesimal volume element. 
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