

The University Login:
Authentication for Web Applications –
Implementation Comparison

Web Single Sign-On has been identified by the University as a major strategic
direction we should be heading. This paper details the study undertaken by the
Enterprise Architecture Team to identify an Open Source SSO application
which would deliver on our requirements. After careful consideration of the
results detailed below it is recommended the University use CoSign as the SSO
application.

1. Overview
As part of the Simplified Sign-On project, it was found that web authentication,
authorisation, and provisioning methods currently used within the University needed
to be reviewed and greatly simplified. The document The University Login:
Authentication, Authorisation, and Provisioning for Web Applications details this part
of the project.

The current document details the study undertaken by the Enterprise Architecture
Group to implement the authentication portion of Simplified Sign-On. Three
candidate implementations1 have been identified for consideration:
• CAS (Yale University),
• WebAuth (Stanford University), and
• CoSign (The University of Michigan).

2. Licence / Disclaimer

Copyright 2004 The University of Auckland.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
and associated documents (the “Document”), to deal in the Document without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit
persons to whom the Document is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Document.

THE DOCUMENT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

1 The main criterion for selection was that the candidates must be open-source projects the University
could acquire without any up-front costs.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 1 of 28)

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

3. Table of Contents
1. Overview 1

2. Licence / Disclaimer 1

3. Table of Contents 2

4. Goals 3

5. Considerations 3

6. The Results 5
6.1 Central Authentication Service (CAS) 5

6.1.1 Background Information 5
6.1.1.1 How it Works 5

6.1.2 Core Project Requirements 7
6.1.2.1 Critical Requirements 7
6.1.2.2 Desirable Features 8

6.1.3 Considerations 8
6.1.4 Other Features/Problems of Note 9
6.1.5 Overall Thoughts 9

6.2 WebAuth 11
6.2.1 Background Information 11

6.2.1.1 How it Works 11
6.2.2 Core Project Requirements 13

6.2.2.1 Critical Requirements 13
6.2.2.2 Desirable Features 13

6.2.3 Considerations 14
6.2.4 Other Features/Problems of Note 14
6.2.5 Overall Thoughts 15

6.3 CoSign 16
6.3.1 Background Information 16

6.3.1.1 How it Works 16
6.3.2 Core Project Requirements 18

6.3.2.1 Critical Requirements 18
6.3.2.2 Desirable Features 19

6.3.3 Considerations 19
6.3.4 Other Features/Problems of Note 20
6.3.5 Overall Thoughts 20

7. Results Comparison 22

8. Conclusion and Recommendations 23

9. Further Information 25
9.1 Document History 25
9.2 Resources 25
9.3 Correspondence of Note 26

9.3.1 CoSign deployment at The University of Michigan 26
WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 2 of 28)

9.3.2 CoSign Web Application to Kerberos TGT clarification 27
9.3.3 PeopleSoft Authentication 28

9.4 People 28

4. Goals
The primary goal of this project is to implement an efficient, robust, scalable, and
easy to use (both for the End User and for the Web Developer) central web
authentication system with Single Sign-On.

It is envisaged that one of the above implementations will best fit our needs, but it is
highly likely some development will be required to both have it fully meet our needs
and for some ongoing support and maintenance.

5. Considerations
The following table shows the main considerations for evaluating each
implementation. These considerations are over and above the specific requirements
for the system outlined in the design document The University Login: Authentication,
Authorisation, and Provisioning for Web Applications.
Factor Importance Definition/Comments Minimum Expectations
Resilience High Resilience is the

application’s ability to
continue providing service
in the event that one or more
of its components fail.

The infrastructure must be
resilient enough to continue
working (although possibly in
some degraded capacity, yet
without sacrificing security) if
it loses some of its
components.

Efficiency Medium The efficiency of the
application is its ability to
perform its designed
function with as little waste
of resources as possible.
Efficiency is related to
throughput.

The application must be
efficient enough to have a
high enough throughput as
detailed below.

Robustness High Robustness is a measure of
how well an application can
handle errors, whether user-
or system-related.

The application must have a
very good ability to handle
errors. It must log all errors
and warnings to allow system
administrators to monitor
them. The application must
never elevate or allow a login
when an error occurs.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 3 of 28)

Throughput High Throughput is the number of
transactions the application
can service within a given
timeframe.

The throughput for this
application must be high as it
is envisaged this application
will be used intensively. It
must be able to service the
peak authentication request
load comfortably. It would be
catastrophic if web
applications around the
University stopped working
because the central
authentication system could
not service their requests.

Total Cost of
Ownership

High Total Cost of Ownership is
the cost of installing,
supporting, and maintaining
the application and all
supporting infrastructure
within the University
environment.

The Total Cost of Ownership
must be as low as is
reasonably possible, and at
least meet the budgetary
requirements for both the
installation and its ongoing
support.

Scalability Medium Scalability is how easily the
application (either
automatically or configured
by a system administrator)
can extend to use additional
resources to meet a higher
than expected load.

The application need not have
an ability to scale
automatically. The
application must have an
ability to use extra resources
provided by a systems
administrator in a timely
fashion.

Supportability Medium Supportability is the
measure of how easily the
application can be supported
when it is deployed into our
production environment.
Support is often the highest
cost in using an application
because of the long lifetime
of software.

It is relatively important the
application be easily
supportable when in our
production environment. It is
important the application have
sufficient logging to easily
support user problems, etc. It
is also important to have
sufficient monitoring to gauge
the application’s current and
historical ability to service
user requests. Documentation
of the architecture and
installation, etc, is required.

Maintainability Medium Maintainability is the
measure of how easily the
application can be updated,
patched, and bug-fixed, etc,
during its lifetime.

The application must be
reasonably maintainable. It is
not a requirement that the
application is a ‘breeze’ to
maintain, but it must not be a
labour-intensive and highly-
specialised process. The
application must also be
relatively easy to administer
on an ongoing basis.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 4 of 28)

6. The Results

6.1 Central Authentication Service (CAS)

6.1.1 Background Information
Developers: Yale University
Website: http://www.yale.edu/tp/auth/
Version evaluated: Server – 2.0.11

Clients – 2.0.10
Server programming language: Java
Clients (Web servers and
client code) supported:

ASP
Java
Apache 1.3 and 2.0
PAM (*NIX)
Perl
Plsql
Python
MS ISAPI (IIS) (Experimental - The University of
Indiana)

6.1.1.1 How it Works
CAS is based on the Kerberos model (see section 9.2 for further information on
Kerberos). CAS uses an opaque session ID cookie (which is the Ticket Granting
Ticket; TGT) that is only ever returned back to the CAS server. This cookie allows
the CAS server to validate the user without challenging them to enter their credentials
again. A Web application only ever sees its own Service Ticket (ST), which is
associated (on the CAS server) to the TGT for the user.

The ST is a one-time-use-only opaque value that is invalidated when the web
application verifies it for the first time. The ST is not designed as a session key for
the application in any way; it must employ its own persistent state mechanism.

The CAS server is written in Java (Java Servlets and JSP) that must be deployed onto
a J2EE-compliant application server (e.g., BEA Weblogic, Oracle, or Jakarta Tomcat,
etc — see Section 9.2 for further information). CAS relies heavily upon the services
the application server may provide, include any clustering, state replication, and load
balancing. CAS does none of this by itself.

The CAS application is designed in a somewhat tightly-coupled design. The UI (User
Interface) is separate from the core Servlets that handle everything including the
cache of tickets and authentication to the back-end authentication server, etc.

The diagrams below show the components involved when a user attempts to access a
CAS-protected Web application without having authenticated (Figure 1); by first
authenticating to CAS (Figure 2), which also shows the SSO; and when the user
continues to access the resource after authenticating (Figure 3).

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 5 of 28)

http://www.yale.edu/tp/auth/

Figure 1: Unauthenticated access to CAS protected Web resource

Figure 2: User authenticates to CAS server first

Figure 3: User’s continued access to Web application after authentication

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 6 of 28)

6.1.2 Core Project Requirements
This section details how well CAS meets the core design requirements outlined in the
document The University Login: Authentication, Authorisation, and Provisioning for
Web Applications.

6.1.2.1 Critical Requirements
Requirement Measure Comments
Secure
Communication of
user credentials.

Excellent The cookies are sent only via HTTPS unless the
system administrator specifically sets it up not to

Cached credentials do
not contain user data.

Excellent The cookies only contain session keys, which are
mapped by the application to user data.

Cached credentials
not easily re-playable.

Excellent The service keys are only sent to the web server
where the service is running. The authentication
keys are only ever sent back to the CAS
authentication server. For this reason, no
services should run on the same server as the
authentication web service.

User has a logout
facility.

Yes The user has the ability to logout, which
invalidates their credentials. They must then re-
authenticate if they wish to use additional
protected web applications.

Timeout on cached
credentials.

No CAS implements no timeouts for either the TGT
or ST. Having said this, CAS implements the ST
as a one-time-use-only credential that is removed
on first use.

Good logging on the
authentication
service.

Poor There is minimal logging in both the server and
CAS clients.

Support for
Microsoft’s IIS and
Apache 1.3

Fair CAS supports Apache 1.3 but currently only has
IIS support in beta.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 7 of 28)

6.1.2.2 Desirable Features
Feature Supported? Comments
Web Application has
ability to refuse SSO
and force re-auth.

Partial The Web application has the ability to force CAS
to request the user to re-authenticate. The Web
application will then consume the normal CAS
ST like any other Web application. While this
doesn’t meet the desired feature fully, it does
allow the application to centrally re-authenticate
the user again.

Web server allows
central auth to log the
originating IP address
during verification.

No

Detection and
minimisation of brute
force attacks.

No

Support for
Apache 2.0

Yes

6.1.3 Considerations
This section details how well CAS meets the considerations outlined in Section 5
above.
Feature Measure Comments
Resilience Good Given the tightly-coupled design of CAS it is

difficult to have the system components resilient
(because there are very few components). Any
resilience CAS may attain is though the natural
resilience offered by a best-of-breed J2EE
application server.

Efficiency Good The code is clean and employs an in-memory
ticket cache.

Robustness Very Good Java has excellent exception handling, which
CAS employs to detect errors effectively and
handle them appropriately.

Throughput Good CAS will inherit a lot of its throughput from the
characteristics and tuning of the specific J2EE
application server it is deployed in.

Total Cost of
Ownership

Good CAS may have a high cost of deployment given it
reliance on the J2EE application server. It is
thought the on-going support cost for CAS will
be nominal.

Scalability Excellent The scalability of CAS is extremely dependent on
the clustering the J2EE application server may
provide. It has yet to be established whether
CAS will support clustering, as it employs an
internal state. Based on load the J2EE application
server can deploy more Servlets can be
automatically deployed to handle additional load.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 8 of 28)

Supportability Very Good • Most J2EE application servers provide very
good tools to monitor the J2EE components
deployed in it. Unfortunately, these tools do
not extend within the component. The
application server does provide centralised
logging mechanisms.

• There are no administrative web pages to see
logged-on users, etc.

Maintainability Good The application will be easily patched and
maintained, but it will require deployment to all
of the J2EE application servers and updates to the
clients used on the Web servers.

6.1.4 Other Features/Problems of Note
This section details any other features or problems of CAS worth mentioning and
possible consideration when choosing the implementation.

Feature/Problem Comments
IP Blocking on
repeated failed
authentications

CAS has the capability to block Ips for a short period of time after multiple
authentication attempts. While this is a good thing, it is possible this could
be problem on multi-user hosts, as everyone on the machine will be blocked
from authenticating.

Use of J2EE
Application Server

The J2EE application server may provide a lot of scalability, resilience, and
throughput to CAS. Although commercial J2EE application servers are
often very expensive (e.g., BEA Weblogic), there are (relatively) open
source products such as Jakarta that are equivalently serious contenders.

Forced re-
authentication

The Web application has the ability to force CAS to invalidate the TGT and
request the user to reauthenticate. The Web application will then consume
the normal CAS ST like any other Web application. This essentially allows
the application to ensure CAS had recent contact with the user.

Session Key Size The authentication ticket uses a 50-byte random number (pool size of
approximately 2.6E+120). The service ticket is a 20-byte number (pool size
of approximately 1.5E+48)

N-tiered support CAS requires n-tiered applications authentication mechanisms to be
‘pluggable’.

Support from CAS
developers

The support received from the core CAS developers has been somewhat
disappointing.

6.1.5 Overall Thoughts
CAS enjoys a good design. Its best feature is the ST being a one-time-use-only value:
once the application validates it, it is thrown away and the application’s normal
session control takes over. This means when a user logs out of CAS, all existing STs
can also be invalidated (because they have either been validated and thus destroyed or
are still in the cache to be validated at some point, in which case they can be
destroyed also). This still doesn’t address the fact the user may still use an SSO-
enabled application for which they have been validated, but this is not a problem
because CAS is not a Single Logout service; most SSO implementations suffer this
problem.

CAS supports proxied or n-tier authentication, but it has a very heavy-handed
approach, as it requires the application to support customised authentication
mechanisms. This requires one to be written for, at worst, all of the n-tier applications
we use. Even so, most modern applications support Pluggable Authentication
WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 9 of 28)

Modules (PAM; where you can insert your own authentication modules without the
application knowing or being concerned about it, see Section 9.2 for further
information), or something similar.

CAS’s heavy reliance on the J2EE application server is both a blessing and a burden.
J2EE application servers can be very expensive (although there are a number of good
open source implementations), but they do provide a good host of features. The
University of Auckland has very little internal resource to deploy a J2EE application
server (although BEA Weblogic is used as part of the PeopleSoft applications, it is
relatively hidden in terms of servlet deployment and maintenance, etc).

The big draw-card and also the biggest possible problem to CAS is its use of Java.
Java is a technology ITSS can support internally, but it can have speed problems,
which is a big concern when the throughput of the application is a critical
requirement. Speed problems, in these circumstances are often overcome by
deploying well-written code in a well-architected environment. Under those
conditions, Java can run as quickly and efficiently as implementations cast in other
programming languages.

If CAS is deployed it is recommended the following work be undertaken to enhance
the application and have it completely meet the University’s requirements:
1. Choose the J2EE application server to be used in the deployment.
2. Ensure CAS will support clustering within the application server.
3. Add better logging to mod_cas and the Servlets to help maintainability,

supportability, and to meet the Invalid use of session key logged requirement.
4. Implement TGT and ST timeouts to meet the Timeout on cached credentials

requirement. The timeout on the TGT should both be an idle timeout and a hard
timeout. The ST timeout should be a ‘must be validated by the web application
before t’ kind of timeout.

5. Customise the JSP (UI) for The University of Auckland.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 10 of 28)

6.2 WebAuth

6.2.1 Background Information
Developers: Stanford University
Website: http://webauthv3.stanford.edu/
Version Evaluated: 3.2.2
Server programming language: Perl
Clients (Web servers and
client code) supported:

Apache 2.0
C/C++ API
Perl API

6.2.1.1 How it Works
WebAuth uses a model similar to PeopleSoft’s V8 Single Sign-On solution. This
requires the WebAuth central authentication services (the WebKDC) to share
symmetric keys with each WebAuth-Enabled Application Server (WAS) to encrypt or
decrypt the tokens sent. Kerberos 5 and SSL are used to bootstrap and get session
keys from the WebKDC.

Like the PeopleSoft design, WebAuth uses the cookie to store information about the
authenticated user for consumption by Web applications (for example user id, creation
and exppiry times etc). Unlike the PeopleSoft design, WebAuth uses ID and proxy
tokens, which are consumed by the WAS and the main token is only consumed by the
WebKDC. All of the tokens are encrypted with the appropriate shared key so only the
recipient can read the contents. Since all of the data required is on the cookies, the
WAS doesn’t need to communicate with the WebKDC to validate the cookie and then
get any user credentials.

All state data for both the WebKDC and the WAS are kept on the user’s browser in
the form of cookies. This makes the WebKDC and WAS stateless with respect to the
WebAuth application.

The diagrams below show the components involved when a user attempts to access a
WebAuth-protected Web application without having authenticated (Figure 4); by first
authenticating to WebAuth (Figure 5), which also shows the SSO; and when the user
continues to access the resource after authenticating (Figure 6).

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 11 of 28)

http://webauthv3.stanford.edu/

Figure 4: Unauthenticated access to WebAuth protected Web application

Figure 5: User authenticates to WebAuth server first

Figure 6: User’s continued access to Web application after authentication

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 12 of 28)

6.2.2 Core Project Requirements
This section details how well WebAuth meets the core design requirements outlined
in the document The University Login: Authentication, Authorisation, and
Provisioning for Web Applications.

6.2.2.1 Critical Requirements
Requirement Measure Comments
Secure
Communication of
user credentials.

Excellent The cookies are sent only via HTTPS unless the
system administrator sets it up not to

Cached credentials do
not contain user data.

Poor The tokens used by WebAuth contain
cryptographically secure information about the
user.

Cached credentials
not easily re-playable.

Excellent The tokens are only sent to the web server where
the application is running. The authentication
tokens are only ever sent back to the WebAuth
authentication server. The timeouts for some
tokens (like the ID and proxy tokens) are used to
limit the ability to re-play these.

User has a logout
facility.

Yes The user has the ability to logout, which
invalidates the credentials. They must then re-
authenticate if they wish to use additional
protected web applications.

Timeout on cached
credentials.

Excellent All the tokens have timeouts, which include hard
and idle timeouts. Some also use ‘must be used
by’ timeouts to limit the possibility of re-play
attacks.

Good logging on the
authentication
service.

Fair There is very little logging. Only fatal errors are
being logged. Reasonable logging in the
Apache 2 module.

Support for
Microsoft’s IIS and
Apache 1.3

Poor WebAuth doesn’t support any of these platforms,
and looks like it doesn’t intend too.

6.2.2.2 Desirable Features
Feature Supported? Comments
Web Application has
ability to refuse SSO
and force re-auth.

Partial The Web application has the ability to force the
WebKDC to request the user re-authenticate.
The Web application will then consume the
normal tokens like any other Web application.
While this doesn’t meet the desired feature fully,
it does allow the application to centrally re-
authenticate the user again.

Web server allows
central auth to log the
originating IP address
during verification.

No

Detection and
minimisation of brute
force attacks.

No There is no ability to detect a brute force on the
private keys used to encrypt the tokens (although
unlikely this will happen).

Support for
Apache 2.0

Yes

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 13 of 28)

6.2.3 Considerations
This section details how well WebAuth meets the considerations outlined in Section 5
above.
Feature Measure Comments
Resilience Fair Given the tightly-coupled design of WebAuth,

the WebKDC handles everything. Although,
given the design, the WebKDC doesn’t do any
validation of the tokens (this is done by the Web
server during the decryption of the token).

Efficiency Good The code is written in Perl, which is very
efficient (even though it is an interpreted
language). A potential problem is Perl tends to
use more memory than, say, an equivalent C
application would.

Robustness Very Good Perl provides for good error handling and
WebAuth uses this to good effect.

Throughput Excellent Because the WebKDC doesn’t do any
verification of the tokens this is one performance
penalty it will not pay. Because of the stateless
nature of the WebKDC, this will give it a higher
throughput also. The only possible drawback is
the use of an interpreted language.

Total Cost of
Ownership

Poor The deployment cost for WebAuth may be quite
high given the lack of required client support. It
is thought the on-going support cost for WebAuth
will be small but given it is in Perl it will be
higher than Java.

Scalability Excellent Because the WebKDC is stateless (all state is
stored in the cookies on the user’s browser),
WebAuth is highly scalable. Multiple servers
can be operated with the WebKDC installed, and
they do not require replication, etc.

Supportability Fair • There is very little logging to help with
support.

• There are no administrative web pages to see
logged on users, etc.

Maintainability Good The application will be easily patched and
maintained, but it will require deployment to all
of the WebKDC servers and updates to the
clients used on the Web servers.

6.2.4 Other Features/Problems of Note
This section details any other features or problems of WebAuth worthy of mention
and possible consideration when choosing the implementation.
Feature/Problem Comments
Use of Shared
Symmetric keys

The use of Shared Symmetric keys will secure the data contained in the
cookies, but if this key was compromised in any way (especially the
WebKDC’s private key) it would be catastrophic.

The Stateless nature
of the WebKDC

Because all state for the WebKDC is stored on the user browser (although
this has problems) this makes the WebKDC highly distributable and thus
the WebAuth system highly scalable.

Ability to access
Kerberos tickets

WebAuth allows for WAS access to Kerberos tickets, but doesn’t appear to
support the GSSAPI (see Section 9.2 for details) in the clients.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 14 of 28)

6.2.5 Overall Thoughts
WebAuth provides a number of good features, the most prominent of which is the
scalability of the system through its stateless design. Because of the stateless design,
the WebKDC can be highly distributed at very small cost to the service (because no
replication is required).

Unfortunately this high scalability comes at a price to the overall security of the
system, as it is considered the storage of data in the cookie which the WAS consumes
is too risky, given browser hacks and cross-site scripting attacks to get some browsers
to release their cookies to parties not entitled to them. Although CAS and CoSign use
cookies, and are technically vulnerable to these attacks, their cookies contain opaque
data from which it is more or less impossible for a hacker to obtain any information
relating to the user or session. Also, WebAuth is at great risk if any one of the shared
keys is compromised, which could give, in the worst case, access to the WebKDC
authentication tokens.

The amount of client support for WebAuth is disappointing, as WebAuth supports
only Apache 2 servers. The most notable omission here is Microsoft IIS support with
Apache 1.3 a close second.

If WebAuth is deployed it is recommended the following work be undertaken to both
enhance the application and have it completely meet the University’s requirements:
1. Add better logging on the WebKDC.
2. Customise the HTML templates for The University of Auckland.
3. Develop IIS and Apache 1.3 support to meet the Support for Microsoft’s IIS and

Apache 1.3 and 2.0 requirement.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 15 of 28)

6.3 CoSign

6.3.1 Background Information
Developers: The University of Michigan
Website: http://www.umich.edu/~umweb/software/cosign/
Version Evaluated: 1.5.1
Age:
Server programming language: C
Clients (Web servers and
client code) supported:

MS ISAPI (IIS)
Apache 1.3 and 2.0+
Java Servlet (In Development)
Java/J2EE

6.3.1.1 How it Works
CoSign uses a model much like Kerberos, using the TGT to issue a ST, but its model
may issue both the TGT and the ST before validating the user. It then associates these
with internal state once the user authenticates.

CoSign uses a somewhat loosely-coupled design in which the CGI handles most of
the user interface and the cosignd service handles the ticket cache while the monster
process handles any replication and cache cleanup. Both the CGI and the
cosignd/monster components need not be on the same host.

CoSign handles replication between multiple services via the monster processes,
which walks through the TGT cache and replicates to known servers if required.

A CoSign-protected web application caches all the STs it has already validated so it
doesn’t need to access the cosignd service to validate every request to the web
resource.

The diagrams below show the components involved when a user attempts to access a
CoSign-protected Web application without having authenticated (Figure 7); by first
authenticating to CoSign (Figure 8), which also shows the SSO; and when the user
continues to access the resource after authenticating (Figure 9).

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 16 of 28)

http://www.umich.edu/~umweb/software/cosign/

Figure 7: Unauthenticated access to CoSign protected Web resource

Figure 8: User authenticates to CoSign service first

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 17 of 28)

Figure 9: User’s continued access to Web application after authentication

6.3.2 Core Project Requirements
This section details how well CoSign meets the core design requirements outlined in
the document The University Login: Authentication, Authorisation, and Provisioning
for Web Applications.

6.3.2.1 Critical Requirements
Requirement Measure Comments
Secure
Communication of
user credentials.

Excellent The cookies are sent only via HTTPS unless the
system administrator specifically sets it up not to.

Cached credentials do
not contain user data.

Excellent The cookies only contain session keys, which are
mapped by the application to user data.

Cached credentials
not easily re-playable.

Excellent The service keys are only sent to the web server
where the application is running. The
authentication keys are only ever sent back to the
CoSign authentication server. For this reason, no
application should run on the same server as the
cosign authentication server.

User has a logout
facility.

Yes The user has the ability to log out, which
invalidates the credentials. They must then re-
authenticate if they wish to use additional
protected web applications.

Timeout on cached
credentials.

Excellent There is an idle timeout on the authentication
cookie (which defaults to two hours) and an
absolute timeout (which defaults to 12 hours).

Good logging on the
authentication
service.

Poor There is minimal logging, and where there is, it
varies in quality greatly.

Support for
Microsoft’s IIS and
Apache 1.3

Excellent Both are fully supported.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 18 of 28)

6.3.2.2 Desirable Features
Feature Supported? Comments
Web Application has
ability to refuse SSO
and force re-
authentication.

No The web application may get the following data
from the CoSign server:
• Login Name
• Authentication Realm
• Kerberos TGT.

Web server allows
central auth to log the
originating IP address
during verification.

No

Detection and
minimisation of brute
force attacks.

No

Support for
Apache 2.0

Yes

6.3.3 Considerations
This section details how well CoSign meets the considerations outlined in Section 5
above.
Feature Measure Comments
Resilience Very Good If the components of the system are distributed

properly, the system will be fairly resilient.
Given the loosely-coupled design of CoSign the
possible configurations for deployment are
numerous and varied. Because the CoSign server
has the ability to replicate data to other servers,
they can be easily distributed for both resilience
and throughput.

Efficiency Good All authentication cookies and service cookies
are stored as files on disk. This could affect
efficiency under high-load situations.

Robustness Good Once the application is up and running it appears
to handle errors in a reasonable fashion.

Throughput Excellent The University of Michigan are currently using
CoSign on three dual 2.8Ghz machines with 4GB
RAM and are servicing approx. 255k ST
registrations and 180k login requests per day.

Total Cost of
Ownership

Good CoSign may have a high cost of deployment
given it some of the coding changes which may
be required. It is thought the on-going support
cost for CoSign will be small.

Scalability Excellent • All authentication cookies and service cookies
are stored as files on disk. This could affect
scalability, as there is a maximum number of
objects the OS allows in a directory.

• The monster process caters for the replication
of the TGT and ST to other cosignd services
running on other hosts.

• The relationship of CoSign CGI to cosignd
/monster services need not be one-to-one.

Supportability Fair • There is very little logging to help with
support.

• There are no administrative web pages to see
logged-on users, etc.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 19 of 28)

Maintainability Good • The core of the application will be easily
maintainable, it will require bug
fixes/patching to all of the central CoSign
services.

• Patching/Fixing the clients and client APIs
will be a little more difficult because of their
distributed nature.

6.3.4 Other Features/Problems of Note
This section details any other features or problems of CoSign worthy of mention and
possible consideration when choosing the implementation.
Feature/Problem Comments
Fit in with Shibboleth
framework

CoSign fits into the Shibboleth framework for the inter-institutional sharing
of resources subject to access controls. Details on Shibboleth can be
obtained from http://shibboleth.internet2.edu/

Ability to access the
Kerberos TGT and
support for GSSAPI

There is the ability for applications to get access to the user’s Kerberos TGT
so as to facilitate authentication to n-tier applications via the GSSAPI (see
Section 9.2 for more). This is a big advantage because a lot of network-
based resources allow GSSAPI authentication.

All cookies stored on
disk

The filename used is the name and value of the cookie. This means a user
may have the ability to obtain access to the disk on the server and even
execute arbitrary code if the application doesn’t successfully check for ALL
possible ‘bad’ characters.

Very University of
Michigan (UM)
specific

The code is very UM-specific, and will require some code changes (in
addition to UI customisations) to enable it work within our environment
easily.

TGT Replication With the monster process handling replication at intervals that default to
120 seconds, there is a possibility (if using DNS round-robin or a Foundry
switch) that the TGT might not have replicated in time, and thus the user
will get an error. While it is considered this will be fairly rare, it is a
possibility.

‘Friend’ or guest
access

CoSign allows a person who is not a member of the institution (if
configured) ‘friend’ or guest access. These account logins have the form of
an e-mail address. They are not self-service accounts: the account and
password must have been created previously.

PeopleSoft support The University of Michigan have a J2EE client working against their
PeopleSoft application.

Session Key size The service and authentication keys are a 93-byte base64 encoding of
randomly-generated data. This gives a pool of approximately 9.3E+223
possible combinations.

6.3.5 Overall Thoughts
CoSign provides some good additional features, the best of which is the ability to use
the GSSAPI for n-tiered applications. Having said this, CoSign also falls short on
some of the critical requirements, the most concerning of which is the robustness, as
the logging short-comings can be easily fixed. The robustness of the application fails
most during the installation, when it may not be configured correctly. Once the
application is correctly configured it appears to behave well.

One of the common flaws with centralised systems and especially authentication and
authorisation systems is their rigidity. They do not allow people to authenticate who
are not actually members of the institution but may need access to some of the
resources it provides (e.g., a professor has papers which they require a person from

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 20 of 28)

http://shibboleth.internet2.edu/

another university to collect, but do not want to e-mail them or just put them on their
web page for all to get to). CoSign alleviates this problem by providing ‘friend’ or
guest access. The logins are in the form of an e-mail address, so Web applications
that do not want guest access can easily disallow them.

The biggest drawcard to CoSign is its IIS module as most of the Web applications at
the University of Auckland are on IIS.

CoSign employs a loosely-coupled designed, which allows us to configure the
components separately according to our requirements and our perceived loading on
the application. This makes for excellent scalability and resilience of this application.

CoSign implements a local disk-based cache for all TGT and ST, both on the Web
server and the CoSign server; it is considered this could be a reasonably big security
risk especially when the cookie name and value are used to name the cache file on
disk. While no exploits for this have been found (as it checks for certain bad
characters), it is consider this is too big a risk to leave as it is.

Given the small group of developers within the CoSign community (approximately
three at UM), it should be easier for us to get changes we wish to develop put back
into the main distribution. If this were not possible, maintenance of the application
will become increasingly more difficult (c.f., PeopleSoft Student Administration!).
The support these developers provide is very good.

If CoSign is deployed then it is recommended the following work be undertaken to
both enhance the application and have it completely meet the University’s
requirements:
1. Alter the codebase and configuration scripts to be more generic and configurable

to environments other than The University of Michigan.
2. Alter the mod_cosign, cosignd and monster programs to cache the TGT and ST

using either a database or an in memory shared table mapped to a file. This will
improve security and, possibly, throughput.

3. Alter the logout process to invalidate all ST in addition to the TGT, or implement
a one-time-use-only system for the ST, like CAS, to limit this problem.

4. Add better logging to mod_cosign and cosignd to help maintainability,
supportability, and to meet the Invalid use of session key logged requirement.

5. Customise the HTML and M4 scripts for the University of Auckland.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 21 of 28)

7. Results Comparison
The results of the previous section have been placed into a ranking in order to produce
a quantifiable comparison between the three implementations.
Each factor and section (e.g. Critical Requirements) is given an importance, which is
used to weight the ranking(s).
The implementations are ranked against each other for each of the factors outlined
earlier in the document, with the exception of Additional Features/Problems where
the implementations are ranked on the quantity and quality of the additional features
or problems. This table essentially is a rank of the weighted averages.

Table 1: Implementation Comparison Results

Factor Importance Implementation Ranking
CAS WebAuth CoSign

Ciritical Requirements High
Secure communication of credentials High 1 1 1
Cached credentials not easily re-playable High 1 1 1
Timeout on cached credentials High 3 1 1
Microsoft IIS and Apache 1.3 support High 2 3 1
Cached credentials do not contain user/session data Medium 1 3 1
User logout facility Medium 1 1 1
Good logging on authentication service Medium 2 1 2

3 2 1

Considerations High
Resilience High 2 3 1
Robustness High 1 1 3
Throughput High 3 1 1
Efficiency Medium 1 1 1
Total Cost of Ownership Medium 1 3 1
Scalability Medium 1 1 1
Supportability Medium 1 2 1
Maintainability Medium 1 1 1

2 3 1
Desired Features Medium
Ability to refuse SSO based on security rating Partial Partial No
Can centrally log originating IP on verification No No No
Minisation and detection of brute forse attacks No No No
Apache 2.0 Support Yes No Yes

1 3 2

Additional Features/Problems Low 2 3 1

Overall Ranking 2 3 1

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 22 of 28)

8. Conclusion and Recommendations
Each of the applications chosen for comparison has both strong and weak points to
them. There are areas where the entire group do badly, which are the logging;
administrative web pages, and; good distributed log out support. While the logging is
the most concerning of this group, it is considered this can be easily fixed before
deployment.

All of the applications fail to fully address the logout functionality. While each of the
applications have a logout facility which in effect invalidates any internal state and
the TGT cookie (or similar); they all fail to address any session which may have
already been initiated on the Web applications through the SSO mechanism. While
the CAS documentation states “…CAS is not a ‘single sign-off’ facility; a user that
logs out of CAS will still have access to your application if your application keeps a
persistent session with the user” this is considered to be an excuse. While there is no
single solution to this problem, it needs to be highlighted to the Web application
owner as a possible problem they may face.

The applications have a number of short-comings in their design, some of which can
be fixed. The most concerning of these are the heavy reliance on a J2EE application
server for CAS; WebAuth and its lack of Web server support, and; CoSigns use of the
file system as a cache of cookies. It is important to note that while CAS relies heavily
on the J2EE application server, this is only a problem for the University because we
have no resource internally to fully support it and because of the often prohibitive
purchase and maintenance costs (although there are viable free alternatives).

All of the applications do well when it comes to the resilience, efficiency and
throughput which is pleasing as these are very important to the overall design of a
central Single Sign-On framework. WebAuth does score lower in the resilience
because it has a very tightly-coupled design.

N-tiered application support is quite important because a lot of Web applications are
front-ends to the actual service (e.g., PeopleSoft 8+, Webmail, and nDeva). CoSign
handles this scenario extremely well with its use of the GSSAPI (see Section 9.2 for
more) with Kerberos. Most good applications allow for authentication via the
GSSAPI. While WebAuth does allow the application to get access to the Kerberos
tickets, it doesn’t seem to natively support the GSSAPI. CAS requires the application
support some form of pluggable authentication module or authentication exit.

The choice of programming language for the applications is very diverse, Java for
CAS, Perl for WebAuth, and C for CoSign. Java is a fully supported language within
ITSS, with internal resources and an existing development infrastructure. Perl and C
are languages which do not have full support within ITSS; with only a small amount
of resource in Perl, and a good amount of resource in C (both internal and
NetAccount).

The total cost of ownership is considered to be about the same for each of the
applications, except for CAS if a commercial J2EE application server is required for
deployment. Each of the applications will require the same amount of hardware in

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 23 of 28)

general and each of the applications will require roughly the same amount of
development before deployment.

The support from the CoSign developer community has been very good, but the
support from the other communities has been somewhat disappointing. The support
the community provides us is very important in getting questions answered and also
suggestions for further development.

Given the results of this study and the quantifiable comparison from Section 7, it is
recommend the University use CoSign as the SSO implementation. This is for a
number of reasons:

1. Superior results in the Critical Requirements and Considerations.
2. Superior developer and community support.
3. Superior Web server support.
4. Use of Kerberos and GSSAPI for n-tiered applications.

It is recommended CoSign be deployed using three machines, all replicated via the
monster process. Two would be load balanced by the foundry switch (or something
similar). The third machine can be put in a location on the network where it is
considered there may be a large amount of local traffic. This is shown below:

Figure 10: CoSign deployment recommendation

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 24 of 28)

9. Further Information

9.1 Document History
Date Version Author Comments
23/03/2004 0.1 Brett Lomas Document Created.
02/04/2004 0.2 Brett Lomas Document submitted to EAO for peer

review.
06/04/2004 0.3 Brett Lomas Changes after EAO peer review, the

major of which are:
• Added MS IIS and Apache 1.3

support for Critical
Requirements.

• Added “Total Cost of
Ownership” to the
Considerations.

• Altered the Result Comparison
section to give a better and
fairer comparison.

07/04/2004 0.4 Creative
Integrity

Minor changes.

08/04/2004 0.5 Brett Lomas Final Draft.
16/04/2004 1.0 Brett Lomas Public Release

9.2 Resources
• The University Login: Authentication, Authorisation, and Provisioning for Web

Applications is located at \\petrarca\itarch$\Docs\projects\sso\WebSSODefn.doc
• Candidate implementation home pages:

CAS: http://www.yale.edu/tp/auth/
WebAuth: http://webauthv3.stanford.edu/
CoSign: http://www.umich.edu/~umweb/software/cosign/

• The Web Initial Sign-On working group has a web site at
http://middleware.internet2.edu/webiso/. Of particular interest are the submissions to the
WebISO Web Application Agent Questionnaire of 3 Oct 2002
(http://middleware.internet2.edu/webiso/docs/webiso-questionnaire.txt) which are:
CAS: http://middleware.internet2.edu/webiso/docs/waa-questionnaire/yale.txt
WebAuth: http://middleware.internet2.edu/webiso/docs/waa-questionnaire/stanford.txt
CoSign: http://middleware.internet2.edu/webiso/docs/waa-questionnaire/umich.txt

• Kerberos details can be obtained from:
http://web.mit.edu/kerberos/
http://www.ietf.org/html.charters/krb-wg-charter.html
http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/kerberos/krb5api/krb5api1.html
http://www.faqs.org/faqs/kerberos-faq/

• Java 2 Enterprise Edition (J2EE), Java Servlets and Server Pages documentation
can be obtained from Suns J2EE website http://java.sun.com/j2ee/index.jsp

• Some J2EE Application Server implementations and their web pages are:
Sun: http://wwws.sun.com/software/products/appsrvr/home_appsrvr.html
BEA Weblogic:
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/server/

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 25 of 28)

http://www.yale.edu/tp/auth/
http://webauthv3.stanford.edu/
http://www.umich.edu/~umweb/software/cosign/
http://middleware.internet2.edu/webiso/
http://middleware.internet2.edu/webiso/docs/webiso-questionnaire.txt
http://middleware.internet2.edu/webiso/docs/waa-questionnaire/yale.txt
http://middleware.internet2.edu/webiso/docs/waa-questionnaire/stanford.txt
http://middleware.internet2.edu/webiso/docs/waa-questionnaire/umich.txt
http://web.mit.edu/kerberos/
http://www.ietf.org/html.charters/krb-wg-charter.html
http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/kerberos/krb5api/krb5api1.html
http://www.faqs.org/faqs/kerberos-faq/
http://java.sun.com/j2ee/index.jsp
http://wwws.sun.com/software/products/appsrvr/home_appsrvr.html
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/server/

Oracle: http://www.oracle.com/appserver/
Apache’s Jakarta Tomcat: http://jakarta.apache.org/tomcat/index.html

• Information about Pluggable Authentication Modules (PAM) can be obtained
from http://wwws.sun.com/software/solaris/pam/ or
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/

• Generic Security Services Application Programming Interface (GSSAPI)
information can be obtained from http://www.faqs.org/faqs/kerberos-faq/general/section-
84.html

• Simple Authentication and Security Layer (SASL) Information can be obtained
from http://www.faqs.org/faqs/kerberos-faq/general/section-85.html

9.3 Correspondence of Note

9.3.1 CoSign deployment at The University of Michigan
On Mar 28, 2004, at 9:17 PM, Brett Lomas wrote:

> Hi Kevin,
>
> How are things? I have just one quick question for you if you are able
> and willing.

always willing, generally able. :)

> In your last email you detailed that you have CoSign running on 3
> linux boxes. How have configured these? More specifically I am really
> asking if each of these boxes run the CGI and cosignd/monster or have
> you separated them out? Also how have you configured CoSign web
> servers to talk to these machine? via DNS round-robin or something
> else?

Each of the 3 central weblogin servers is running Apache, the CGI, cosignd, and
monster. Additionally, they host /cgi-bin/logout and /services/ (our rudimentary
"service menu").

The services are configured to use "weblogin.umich.edu" as the weblogin server and
they convert this name into all of its A records to establish connections for 'CHECK.'
We do not actually use round-robin at the service level as the goal here is
thoroughness. However, user's are directed to one of the 3 weblogin servers for LOGIN
and REGISTER using DNS round robin.

Kevin

On Mar 23, 2004, at 8:24 PM, Brett Lomas wrote:

> Hi Kevin (and others :)),
>
> I have a few more questions about Cosign:
>
> 1. Why was it decided to store the cookies on disk? There are a couple
> of reasons I ask this question. Linux/Unix default to only allowing
> around 65500 objects under a single directory. This in itself wouldn't
> normally be a problem, but because the cosign and cosign service
> cookies (for the
> daemon) are stored in one directory; this will fill up very quickly.
> If it
> is suggested we go ahead with CoSign I will be suggesting to
> management that we spend some time changing the storage to either a
> shared memory table (because the cosignd and children have a shared
> parent) OR change it to use a DB backend for storage (and it may also
> possible handle the replication to other cosignd server databases).
> What do you think of these?

These are completely justifiable concerns, I had them myself when we started. We
chose the filesystem because: it was simple to write, easy to debug/test with
standard unix tools, its contents survive a reboot, and it was adequate for cosign's
needs. At peak load we're seeing approximately 120,000 objects in /var/cosign/daemon
on our cosign servers. I'm certain there's a hard limit (for files in a directory),
but in our previous Solaris deploy we found that we ran into performance problems long
before we hit a real limit. In our current Linux deploy we've yet to see any
noticeable slowdown. If someone does encounter such a slowdown, there are, as you
point out, several options for addressing the situation. This is the forum in which
those alternatives would be discussed/hashed out.

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 26 of 28)

http://www.oracle.com/appserver/
http://jakarta.apache.org/tomcat/index.html
http://wwws.sun.com/software/solaris/pam/
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/
http://www.faqs.org/faqs/kerberos-faq/general/section-84.html
http://www.faqs.org/faqs/kerberos-faq/general/section-84.html
http://www.faqs.org/faqs/kerberos-faq/general/section-85.html

> Also having the
> files named the same as the cookie is big security risk (in my
> opinion)...
> it could possibly lead to exploits, although I am still doing my
> security review and have not found a concrete example yet.

I welcome the review and am eager to learn what you discover. I feel confident that
we've explored the possibilities here (note the checks in daemon/command.c for '/'),
but having someone else explore them too is fantastic. What sort of security
vulnerabilities are you concerned about?

> 2. What size is your deployment at UM? Can you give me some stats,
> like the hardware you are using and the number of authentications etc
> you service a day. Only if this is not too much of an effort on your
> part, because I will be stressing the application myself, I am just
> curious.

So far this month we are seeing approximately 180,000 LOGINs per day on a monday -
thursday, as few as half that on a weekend day. These are LOGIN events, of course,
not unique individuals. These 180,000 weekday LOGINs are associated with
approximately 32,000 LOGOUT events.

We REGISTER approximately 255,000 service cookies on an average weekday. 120,000 of
these are for mail.umich.edu. The rest are divided among the roughly 50 other cosign-
protected services in active use on campus.

We're running our weblogin service on three 1u linux boxes. Each machine has dual 2.8
Ghz Xeons and 4 gigs of ram. We're using hardware this (relatively) "beefy" only
because it was pretty much the cheapest thing we were willing to deploy a service on.
We have three of them so we can have the service physically located in multiple server
rooms.
Load average on these machines is typically around .2 (point two). :)

> 3. Have you successfully deployed CoSign to an n-tiered application? I
> specifically ask because will needing the chosen implementation to be
> able to SSO to our Cyrus IMAP server via Horde/IMP

We have several N-tier applications deployed:

 o afs.umich.edu -- a web-based AFS file manager, Horde's gollem running with the
user's AFS token.
 o kpasswd.cgi -- kpasswd, but a cgi
 o mail.umich.edu -- IMP, see below
 o directory.umich.edu -- gui client to our ldap directory service
 o flume -- our web log analysis software (runs reports of user's web statistics
and writes the report to the appropriate directory in AFS).

mail.umich.edu is our most popular web app right now, seeing upwards of 15,000
simultaneous users at any given moment on weekday afternoons with, as I said above,
roughly 120,000 users per day and 60,000 - 70,000 unique users accessing the service
per month.

We made a few changes to mod_cosign a couple of years ago to correctly set up the
GSSAPI environment that IMP/c-client needed. Otherwise IMP should just work out of
the box with Cosign. I can put you in touch with Liam Hoekenga, the person primarily
responsible for our IMP installation, if you have specific questions there.

Kevin

 ... "In, as you say, the mud." ...

9.3.2 CoSign Web Application to Kerberos TGT clarification
Hey,

Yes Johanna's reply was good (thanks Johanna, I didn't get back to you on this; I
haven't had the time to test the bug fix, and I may not until it is decided to with
CoSign), and it is pleasing to see the turn around for bug fixes is excellent!

The Kerberos issue is not such a problem, I always assumed it was the TGT, but the
submission you made to the WebISO Web Application Agent Questionnaire seemed to
suggest otherwise (although it is possible I misread it).

I think it would be nice to, as you suggested, implement a finely grained approach as
opposed to just a yes/no type of authorization. Like you say, the approach would be to
have a list of services the application can request ST for, and possibly a special tag
as 'tgt' to allow the application to actually get the TGT for the user as well.

BTW: If we do go into production with CoSign, we will be very willing to implement
changes which we think are good, and submit them back into the CoSign main release if
they are of benefit to anyone else, we will not be expecting you guys to implement
changes we need :).

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 27 of 28)

Cheers

Brett

-----Original Message-----
From: kevin mcgowan [mailto:clunis@umich.edu]
Sent: Thursday, 1 April 2004 6:36 a.m.
To: Brett Lomas
Cc: cosign-discuss@umich.edu
Subject: Re: Kerberos Tickets

On Mar 30, 2004, at 10:20 PM, Brett Lomas wrote:

> Thanks for the reply on the hardware and all, very helpful.

glad to help. I trust Johanna's reply was helpful too?

> CoSign and Kerberos question. When an application requests a Kerberos
> ticket (the RETRIEVE command to cosignd) it appears to be allowed to
> specify the ticket name (eg imap/imap.auckland.ac.nz@AUCKLAND.AC.NZ).
> This looks to be a service account (in the examples I have seen), does
> this mean that a service ticket is passed back to the application, and
> not a/the TGT the cosign CGI obtained to authenticate the user?

That's the eventual plan, Brett, but currently it is the TGT that is returned. You'll
note the 0/1 in cosign.conf to determine whether a service can request Kerberos
credentials? In theory this could eventually be a list of services for which a
service is allowed to request service tickets (e.g. mail can ask for imap, directory
can ask for ldap, etc.). We were sure, during early development, that not
distributing the TGT would be a major feature requirement. So far it just hasn't been
(for us, anyway).

Is this a make or break feature for your site?

Kevin

9.3.3 PeopleSoft Authentication
The following was an email to the CAS mailing list. It details an attempt to work on
producing a CAS module to authenticate to PeopleSoft applications. After this email
it was discovered PS 8 allows for a Web Server Security Exit which is where the PS
application server trust the web server to authenticate the user and pass the username
to PS through PeopleCode (See PeopleBooks for more information).

Date: Mon, 01 Mar 2004 10:56:41 -0700
From: Chris Michels <Chris.Michels@NAU.EDU>
Subject: BEA WebLogic Identity Assertion Provider
To: cas@tp.its.yale.edu
Message-ID: <6.0.0.22.2.20040301105329.024a2a68@mailbox.nau.edu>
Content-Type: text/plain; charset=us-ascii; format=flowed

Has anyone done any work on a Identity Assertion Provider for BEA WebLogic that uses
CAS to authenticate? If so, any advice or code you are willing to share would be much
appreciated.

We are trying to get WebLogic to use CAS and then have PeopleSoft trust WebLogic's
authentication.

-- Chris

9.4 People
• Tim Chaffe, ITSS Enterprise Architecture Manager, t.chaffe@auckland.ac.nz
• Brett Lomas, ITSS Enterprise Architecture Office, b.lomas@auckland.ac.nz
• Creative Integrity Ltd, support@creativeintegrity.co.nz

[end of document]

WebSSOImplementationComparision.doc, last saved 23/04/2004 10:10:00
Title: The University Login: Authentication for Web Applications – Implementation Comparison

University of Auckland, ITSS, Enterprise Architecture (Page 28 of 28)

mailto:clunis@umich.edu
mailto:t.chaffe@auckland.ac.nz
mailto:b.lomas@auckland.ac.nz
mailto:support@creativeintegrity.co.nz

	The University Login:
	Authentication for Web Applications – Implementation Compari
	Overview
	Licence / Disclaimer
	Table of Contents
	Goals
	Considerations
	The Results
	Central Authentication Service (CAS)
	Background Information
	How it Works

	Core Project Requirements
	Critical Requirements
	Desirable Features

	Considerations
	Other Features/Problems of Note
	Overall Thoughts

	WebAuth
	Background Information
	How it Works

	Core Project Requirements
	Critical Requirements
	Desirable Features

	Considerations
	Other Features/Problems of Note
	Overall Thoughts

	CoSign
	Background Information
	How it Works

	Core Project Requirements
	Critical Requirements
	Desirable Features

	Considerations
	Other Features/Problems of Note
	Overall Thoughts

	Results Comparison
	Conclusion and Recommendations
	Further Information
	Document History
	Resources
	Correspondence of Note
	CoSign deployment at The University of Michigan
	CoSign Web Application to Kerberos TGT clarification
	PeopleSoft Authentication

	People

