
The multifaceted goals of genetics can be summarized 
as describing, understanding and utilizing the rela‑
tionship between genotypes and phenotypes, or the 
genotype–phenotype map (GPM). There are arguably 
millions of traits in a complex organism such as the 
human, but the number of genes in the human genome 
is only slightly above 20,000. Inevitably, there are at 
least some genes that affect multiple traits. This phe‑
nomenon of one gene (or one mutation) affecting mul‑
tiple traits is referred to as pleiotropy, a concept that is 
exactly 100 years old1. The other side of the coin is the 
phenomenon that one trait is controlled by multiple 
genes, which may be epistatic to one another2–4; these 
traits are known as multifactorial, or polygenic, traits. 
In this Review, we focus on the pleiotropic structure 
of the GPM, because the multifactorial structure of the 
GPM, in the context of human common disease, has 
been the subject of a number of recent reviews5–9.

Pleiotropy is a common phenomenon. For example,  
mutations in the human homeobox gene ARX cause 
phenotypes as diverse as ambiguous genitalia and  
lissencephaly (in which whole or parts of the surface 
of the brain appear smooth). Mutations in human 
AMT, a phosphatidylinositol‑3 kinase gene, cause the 
symptoms of cerebellar ataxia, telangiectases (visibly 
dilated blood vessels on the skin or mucosal surface), 
immune defects and a predisposition to malignancy. 
Although some definitions of pleiotropy require that 
the affected traits are seemingly unrelated, we feel that 
this criterion is too subjective to be useful, and so here 
we adopt a more liberal definition, unless otherwise 
noted.

Pleiotropy is a central feature in genetics and has 
broad implications for evolution10–14, development15, 
canalization16, ageing17 and disease18,19. Pleiotropy 
causes compromises among adaptations of differ‑
ent traits, because a mutation that is advantageous to  
one trait may be harmful to another trait. The quanti‑
tative modelling of this idea led to the so‑called ‘cost 
of complexity’ hypothesis (BOX 1), which posits that 
complex organisms are inherently less evolvable or 
adaptable to changing environments than are simple 
organisms, because their mutations are more pleio‑
tropic10–11. It is also believed that the compromises 
among adaptations of different traits underlie many 
fundamental principles and phenomena in biology, 
including senescence17, speciation20 and cooperation21. 
In relation to senescence, for example, it was proposed 
that mutant genes that are beneficial to development 
and reproduction are deleterious after reproductive 
age, which may explain why all species have a limited  
lifespan17.

Despite the importance of pleiotropy, few empirical  
data were available on this phenomenon until a few years  
ago, when large data sets from several model organisms 
were generated by functional genomics and QTL map‑
ping. The arrival of the data not only led to revelations 
of general patterns of pleiotropy, but also stimulated 
assessments of mathematical models of pleiotropy and 
their evolutionary predictions. Many findings are in 
sharp contrast to what has been presumed true and 
taught for 80 years. For instance, the model of universal  
pleiotropy — that every gene affects every trait — is 
not empirically supported.
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Abstract | It was first noticed 100 years ago that mutations tend to affect more than one 
phenotypic characteristic, a phenomenon that was called ‘pleiotropy’. Because pleiotropy 
was found so frequently, the notion arose that pleiotropy is ‘universal’. However, quantitative 
estimates of pleiotropy have not been available until recently. These estimates show that 
pleiotropy is highly restricted and are more in line with the notion of variational modularity 
than with universal pleiotropy. This finding has major implications for the evolvability of 
complex organisms and the mapping of disease-causing mutations.
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Figure 1 | Possible causes of co-inheritance of 
phenotypic traits. a | Pleiotropy. Variation at a genetic 
locus affects more than one trait. b | Two closely linked 
genes, each affecting one character, can lead to 
co-inheritance of phenotypic differences as a result of 
linkage disequilibrium. c | So-called ‘artefactual’ pleiotropy 
describes cases in which a mutation (represented by the 
lightning bolt) that affects a shared cis-regulatory element 
also affects the traits that are controlled by the two genes.

In this article, we review the recent literature on the 
measurement of pleiotropy, and describe the extent 
and patterns of pleiotropy. We discuss what is known 
about its molecular basis, how our current findings 
relate to the mathematical models of pleiotropy, and 
the implications of studies of pleiotropy for evolvability 
and adaptation. We argue that most genes in a genome 
are not highly pleiotropic, that the gene–trait relation‑
ship is strongly modular, and that pleiotropy does not 
hinder the evolution of complex organisms.

measuring pleiotropy
The standard definition of pleiotropy is as intuitive 
as it is ambiguous. It simply states that a mutation is 
pleiotropic if it affects more than one trait or character  
(FIG. 1a). The degree of pleiotropy, then, is just the 
number of traits that are affected by a mutation, and 
all that seems to be required is to count those affected 
traits. This is a simple and intuitive definition but, for 
technical and conceptual reasons, it is difficult to put 
into scientific practice. Pleiotropy inherits all the ambi‑
guities that exist in making both genetic and phenotypic 
concepts precise and operational. on the genetic side of 

the genotype–phenotype relationship, the problems are 
largely technical. For instance, how does one distinguish 
between a pleiotropic mutation and two closely linked 
mutations (FIG. 1b)? The problems can also be concep‑
tual. For instance, a mutation in a shared cis‑regulatory 
element can affect the expression of two neighbouring 
genes, each affecting a separate trait (FIG. 1c). Is this plei‑
otropy real, or artefactual? If pleiotropy is a property of 
a mutation, then this second scenario would be consid‑
ered to be a case of pleiotropy; if pleiotropy is a property 
of genes, then it would be classified as an artefact22.

on the phenotypic side, the problems are more 
conceptual. For instance, what exactly is a phenotypic 
character? Are different measures taken from the skull 
of a mouse really different characters, or just differ‑
ent attributes of the same character? Shall we measure 
pleiotropy directly by counting effects, or indirectly by 
measuring the consequences of pleiotropy on other 
observable variables using mathematical models? In 
the following two sections we discuss problems that 
affect both the genotypic and phenotypic characteri‑
zation of pleiotropy, and we point to possible routes to 
resolve them.

Box 1 | Fisher’s geometric model and the ‘cost of complexity’

Concerns about how random mutations and natural selection can lead to complex 
organisms and adaptations are as old as evolutionary theory61. The most influential 
attempt to give this topic a rigorous basis is Fisher’s geometric model (FGM)10, 
which is the framework of most research on the genetic and evolutionary 
consequences of pleiotropy.

Fisher used a metaphor. Consider a microscope with many knobs to adjust the 
lenses so that one obtains a sharp image. Now ask yourself what is the chance of 
obtaining an optimally functioning microscope by randomly turning the knobs on 
the microscope. The chances are not bad as long as the number of knobs is small, say 
one or two, but intuition suggests that the chances will decrease dramatically if the 
number of adjustable parameters (knobs) is larger than two or three. To back up this 
intuition, Fisher introduced a geometric metaphor, which eventually became known 
as the FGM.

In his model, Fisher argues that the functioning of the microscope is analogous to 
the fitness of an organism. The performance of the microscope depends on the state 
of various tunable knobs, corresponding to distances and orientations of various 
lenses, whereas the fitness of an organism depends on the state of various 
phenotypic characters such as body size, beak length and beak depth. The increase 
in the fitness of an organism by random mutations is then analogous to the attempt 
to improve the performance of a microscope through randomly changing the 
positions of the knobs on the microscope.

The analogy between the microscope and an evolving organism can be formalized 
by representing the phenotype of an organism as a point in a high-dimensional 
space, where the dimensions of that space correspond to the traits of the organism. 
The more independent dimensions of variation the phenotype has, the more difficult 
is improvement resulting from random changes. The reason is that, if there are many 
different ways to change a phenotype, it becomes very unlikely that a random 
mutation affects the right combination of traits in the right way to improve fitness. 
Fisher noted that, the smaller the effect, the higher the chance that the mutation is 
beneficial. At one extreme, mutations with infinitesimally small effect have a 50% 
chance of improving fitness. This argument led to the widely held position that 
evolution proceeds by small mutations.

Furthermore, Orr discovered that both the fixation probability of a beneficial 
mutation and the fitness gain that is conferred by the fixation of the  
beneficial mutation decrease with organismal complexity11. Thus, the predicted  
rate of adaptation decreases quickly with the rise in organismal complexity, a 
theoretical finding known as the ‘cost of complexity’.
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Genetic load
The difference between the 
mean fitness of the population 
and the fitness of the fittest 
genotype in the population. 
The more deleterious the 
mutations in a population,  
the lower the mean fitness  
and the higher the genetic load.

Effective population size
(Ne). A measure of the strength 
of random genetic drift in a 
population. The lower the 
effective population size,  
the stronger the genetic drift. 
Ne is influenced by the census 
population size, the breeding 
system, the fitness differences 
among individuals, the sex 
ratio and other factors.

the genetics of pleiotropy
operationally, pleiotropy is detected by the co‑segregation  
of some phenotypic differences. If two or more traits 
are affected, their co‑segregation can be due to linkage 
between two loci, each of which has a mutation that 
affects one or a subset of the traits. There are a number 
of methods that test for pleiotropy in QTL data. one of 
the more frequently used techniques is that of Knott and 
haley23. The bias that is introduced in estimating the 
degree of pleiotropy by failing to detect closely linked 
genes is an upward bias, meaning that in QTL data we 
will tend to overestimate pleiotropy.

Gene knockout and gene knockdown genotypes. An 
alternative and increasingly popular method of measur‑
ing pleiotropy is to use knockout genotypes in a homog‑
enous background24. This method avoids the problem 
of closely linked genes, but it assesses only mutations 
that lead to the complete loss of gene activity. As pointed 
out by David Stern25, one has to distinguish between the 
pleiotropy of the gene, that is, the totality of functions a 
gene performs, and the pleiotropy of mutations, which 
tends to affect only a subset of the functions of a gene. 
Mutational pleiotropy is arguably more relevant to evo‑
lutionary change than is total gene pleiotropy, as evolu‑
tion proceeds mostly by replacing one allele by another 

rather than by removing or creating an entire gene. 
Mutational pleiotropy tends to be smaller than gene plei‑
otropy (for examples, see REF. 25). nevertheless, one can 
argue that the pleiotropy of knockout genotypes gives 
an upper limit of mutational pleiotropy, as it is plausible 
that a complete loss of gene activity has more widespread 
effects than do mutations that affect only some aspects 
of gene activity. The above reasoning applies mainly to 
knockout genotypes that are not lethal. If the knockout is 
lethal at a certain stage, any functions that the gene may 
have in later stages will remain undetected.

In recent years, functional gene knockdown experi‑
ments have also been used to estimate gene pleiotropy. 
The idea is that a functional knockdown will mimic the 
effect of a genetic knockout, at least in the stage of the life 
cycle in which the knockdown is carried out. Again, these 
estimates have to be taken as an upper limit of the plei‑
otropy of allele substitutions, with the additional caveat 
that the knockdown phenotypes are usually limited to a 
particular time in development. For instance, the knock‑
down strategy has been used to assess pleiotropy of genes 
that function in early nematode embryogenesis26.

Interpreting measures of pleiotropy. Another methodo‑
logical consideration is that pleiotropy can be detected 
only for characters that are in fact recorded or meas‑
ured in any given study. hence, a statement such as “this 
gene has N pleiotropic effects” is meaningless, because 
N depends on the number and kind of phenotypic traits 
that have been recorded in a study. There are of course 
many and deep problems with defining the units of 
phenotypic variations27, as briefly discussed in the next 
section. here, we only want to point out that pleiot‑
ropy is better expressed in terms of the percentage of 
the phenotypic characters that have been studied. This 
approach also makes estimates of the degree of pleiot‑
ropy more comparable between studies; however, it is 
not yet formally established that this is the best way to 
scale observed pleiotropy with the size of the study (that 
is, the number of characters scored). of course, choosing 
an unbiased sample of traits to score is important for an 
accurate measure of pleiotropy.

Detection limits. Finally, there is the vexing problem of 
detection limits, which makes estimates of pleiotropy 
difficult to compare from study to study. This prob‑
lem is particularly acute when the phenotypic traits are 
quantitative. of course, the size of an effect that can be 
detected in any particular study depends on the experi‑
mental design (chiefly, its power) and the variance of the 
characters studied. hence, it is perfectly rational, but not 
very useful, to say that we cannot know the pleiotropy of 
any mutation because there can always be more effects 
than a particular study can detect.

Although the above argument is correct, it is also 
true that, for each experimental design, the detection 
limit can be assessed; thus, we can be reasonably sure 
that any phenotypic effects we miss will be substan‑
tially smaller than the detected ones. Recent estimates 
of pleiotropy usually find a significant degree of pleiot‑
ropy for ≤10% of characters scored. Let us assume that 

 Box 2 | indirect methods to estimate pleiotropy

Poon and Otto51 and Orr11 were the first to propose using the results from Fisher’s 
geometric model (FGM) (BOX 1) to indirectly measure the complexity or degree of 
pleiotropy of mutations in real organisms. For instance, Poon and Otto showed that 
the genetic load of a population (L), under the FGM, should depend only on the 
effective population size (N

e
) and the number of dimensions (or characters, denoted n), 

assuming universal pleiotropy:

Hence, measuring how the genetic load increases with decreasing effective 
population size allows one to estimate the effective dimensionality of the phenotype, 
or, more likely, the average pleiotropy of mutations. Using similar results, Tenaillon 
and colleagues62 estimated the dimensionality of the vesicular stomatitis virus (VSV) 
and the bacteriophage Φ X174. They found the effective number of dimensions to be 
45 for Φ X174 and ten for VSV. This is consistent with the ordinal difference of 
genome complexity, as Φ X174 has 11 genes and VSV has five.

Another approach to estimating effective phenotypic complexity is to utilize 
predictions of the FGM about the distribution of fitness effects53. This method was 
applied to data from a wide range of organisms (from viruses to plants). However, 
the estimates of the effective number of characters from this method are low. For 
instance, they estimate an n for VSV of about 1. The reason for the discrepancy 
between this estimate and that obtained by Tenaillon and colleagues62 is not clear. 
Also, the highest estimate from fitness distributions for Caenorhabditis elegans 
(n = 2.58) seems low for a metazoan organism, if taken as an estimate of phenotype 
complexity. However, if these numbers are interpreted as average pleiotropy rather 
than phenotypic complexity, then they do not seem to be out of the ordinary in 
light of the results of direct pleiotropy estimates. It could be that the methods used 
by Poon and Otto and by Tenaillon and colleagues are actually measuring 
phenotypic complexity, whereas those that use fitness effect distribution measure 
average pleiotropy.

Finally, Su and colleagues63 used the FGM prediction of the variance in amino acid 
substitution rates to analyse protein evolution data from mammals64,65.These 
estimates of pleiotropy have a modal value of six, which is similar to the estimates 
from more direct methods of measuring pleiotropy.
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Figure 2 | the degree of pleiotropy depends on the definition of phenotypic 
traits. a | A mutation affecting femur and tail length can be considered as having  
two pleiotropic effects. b | However, if we choose another coordinate system that is 
mathematically equivalent to that in part a, the ‘number of pleiotropic effects’ can 
be one. As shown in the diagram, this can occur if we choose a coordinate that 
coincides with the direction of the effect in phenotype space. For instance, if we 
calculate a trait called ‘FeTail’, which is the sum of femur length and tail length, and 
‘TaFemur’, which depends on the negative femur length and the tail length, we 
obtain a rotated coordinate system that represents the same space as the original 
one. To make the idea of pleiotropic effects non-ambiguous, the traits or characters 
need to reflect biologically meaningful partitions of the phenotype, meaning that 
the distinction between traits needs to be biologically non-arbitrary.

we have a study in which 30 characters are examined, 
and we find significant effects for three of them, with 
a power of 80%; then, the likelihood that we miss 27 
effects of the same or larger size by chance is less than 
10–19. In cases in which we detect few effects and the  
number of characters studied is high, and in which  
the power of the test is reasonable, it is unlikely that the 
true number of above‑threshold effects is much higher. 
of course, this limitation introduces a downward bias  
in estimates of pleiotropy, but this bias tends to be small in  
well‑designed studies.

Revising the experimental design. The above discussion 
shows that counting statistically significant effects is a 
pragmatically reasonable thing to do, as long as we have 
no better method. however, it also shows that our cur‑
rent approach is not entirely satisfying. For example, 
counting significant effects leads to results that are con‑
ditional on the experimental design and the arbitrary 
choice of the critical type I error rate, suggesting that 
it might be more meaningful to abandon measuring 
pleiotropy by the number of significantly affected traits 
and to conceptualize pleiotropy as a statement about 
the distribution of effect sizes across characters. Then, 
pleiotropy can be measured by using the effects on all 
traits examined, rather than just those that are signifi‑
cant at an arbitrary level of type I error. For instance, 
in the hypothetical example above, instead of counting 
significant effects, one may want to estimate the shape 
of the distribution of effect sizes of a mutation on all 
scored traits. This distribution was recently reported 
to be approximately normal, with more pleiotropic 
mutations having greater standard deviations28. Thus, 
the standard deviation of the effect size distribution 

may be a natural measure of the level of pleiotropy. It 
would be important to develop such a measure and an  
appropriate sampling theory.

the phenetics of pleiotropy
Measuring pleiotropy leads to many conceptual and 
methodological problems. Below, we describe the 
direct methods that are available to estimate pleiotropy. 
Indirect methods have also been developed; these meth‑
ods are based on Fisher’s geometric model (BOX 1) and are 
briefly discussed in BOX 2.

How do you define a phenotype? Measuring pleiotropy 
raises difficult questions about what we mean by the 
statement that “a mutation affects more than one trait 
or character”. operationally, any effect on two or more 
distinguishable traits can count as pleiotropy. however, 
this definition becomes problematic if we attempt to 
measure pleiotropy. To measure an attribute requires 
that we eliminate ambiguity about its meaning by 
removing arbitrary factors that influence the numerical 
assignment29. To illustrate the point, let us assume that 
we find a QTL in the mouse genome with significant 
effects on tail length and femur length out of 20 quan‑
titative measurements taken from the post‑cranial skel‑
eton. This can be seen as evidence that this QTL has at 
least two pleiotropic effects (FIG. 2a). however, a math‑
ematician would probably point out that this estimate 
of pleiotropy is arbitrary, because we can define a new 
coordinate system, in which one dimension is defined 
as ‘FeTail’ = femur length + tail length. A rotation of the 
coordinate axis leads to an equally valid representation 
of the phenotype space (FIG. 2b). The pleiotropy of our 
QTL can take the value of 2, or 1, or even 20, simply by 
changing the coordinate system.

The question raised by our mathematician friend 
cannot be answered by mathematics alone. At its  
core, the question is whether there are natural units of 
which the phenotype is composed27. Specifically, the 
question is whether, in fact, the femur and the tail are 
more natural units of the phenotype than is the artificial 
character FeTail. Intuitively, at least to biologists, it seems 
that femur and tail are more natural characters, that 
‘carve nature at its joints’, than FeTail (FIG. 2). But is there 
a principled way to defend this position? And can this 
way of identifying natural characters, if it ever becomes  
available, help us to correctly count gene effects?

Accounting for correlations among traits. Another, 
related, problem is whether the effects of a gene on corre‑
lated traits can be counted as independent contributions  
to the degree of pleiotropy. For instance, are the depth 
and the width of a bird beak really two different  
characters? If they always change together, then perhaps the  
beak depth and width are two different measures of  
the same thing, and any mutation that affects both really 
has only one effect. Again, the question boils down to the  
problem of identifying the basic building blocks of 
the phenotype, if they exist. Ignoring trait correlations 
leads to a systematic upward bias in estimates of plei‑
otropy, but it also creates uncertainty as to what is the 
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Figure 3 | Distribution of the degree of pleiotropy.  
In all cases the pleiotropy distribution is largely 
L-shaped, with a low median degree of pleiotropy.  
A | Distribution from QTL mapping. Aa | Pleiotropy of 
QTLs affecting skeletal traits in a mouse intercross 
experiment30. The median degree of pleiotropy is six out 
of 70 skeletal traits (8.5%). Ab | Pleiotropy of QTLs 
affecting body shape and skeletal traits in stickleback33. 
The median pleiotropy per QTL is only one trait out of 54 
traits scored (1.9%). B | Distribution from gene knockout 
and knockdown studies. The mean and median degrees 
of pleiotropy and their standard deviations are shown in 
the inset boxes. The fraction of traits affected is given  
in parentheses. Ba | Pleiotropy of genes affecting yeast 
morphological traits28. A total of 2,449 genes and 253 
traits are considered, after the removal of genes that do 
not affect any trait and traits that are not affected by 
any gene. Bb | Pleiotropy of genes affecting yeast 
growth in different environments28. A total of 774 genes 
and 22 traits are considered. Bc | Pleiotropy of genes 
affecting yeast physiological traits28. A total of 1,256 
genes and 120 traits are considered. Bd | Pleiotropy  
of genes affecting nematode embryonic developmental 
traits28. A total of 661 genes and 44 traits are considered. 
Be | Pleiotropy of genes affecting mouse morphological 
and physiological traits28. A total of 4,915 genes and 308 
traits are considered. Part Aa is modified, with 
permission, from REF. 30 © (2008) Macmillan Publishers 
Ltd. All rights reserved. Panel Ab is modified, with 
permission, from REF. 33 © (2008) John Wiley and Sons. 
Panels Ba–Be are modified, with permission, from REF. 28 
© (2010) US National Academy of Sciences.

▶

Eigenvalue
A characteristic parameter  
of a matrix. In the case of 
co-variance matrices, the 
eigenvalues are equal to  
the amount of variance that  
is associated with the  
principal components of  
the co-variance matrix.

‘effective number of characters scored’. In other words, 
the denominator for calculating the pleiotropy percentage  
is uncertain.

The problem of correlated traits can, to some degree, 
be addressed by calculating an ‘effective’ number of 
traits, which takes the strength of the correlations among 
the traits into account (for example, see REF. 30). A way 
to measure the overall integration of the traits, on the 
basis of their correlations, is to consider the eigenvalue 
distribution of the correlation matrix, which gives one 
an overall measure of how strongly the traits are cor‑
related31. The more different the eigenvalues, the more 
integrated the traits.

An empirical approach to estimating the ‘true’ number 
of characters could be based on an analysis of mutational 
effects themselves. one could count two traits as (quasi‑) 
independent if there is a mutation that dissociates the 
two traits, meaning that there has to be a mutation that 
affects one trait but not the other. This idea was first used 
by Antónia Monteiro and collaborators in an attempt to 
determine the degree of modularity among the different 
eye spots on the wing of the butterfly Bicyclus anynana 
using X‑ray‑induced mutations32. We are not aware of 
a study of pleiotropy that uses this correction for trait 
independence, but it seems to be a reasonably opera‑
tional way to ensure that the traits counted are in fact 
quasi‑independent. of course, this method is limited by 
the array of mutations used to assess trait independence; 
thus, the number of quasi‑independent characters tends 
to be underestimated, which therefore also leads to an 
underestimation of the degree of pleiotropy.

Most of the conceptual and methodological problems 
associated with measuring pleiotropy that are described 
above are seemingly solvable, even though too little 
effort has been expended in addressing them.

the extent of pleiotropy
QTL studies of morphological traits. The extent of 
pleiotropy has been a subject of long‑standing conten‑
tion. Whereas some geneticists consider pleiotropy 
to be rare, others believe that every gene affects every 
trait10. empirical data on pleiotropy had been scarce 
until recently. In 2008, a study was published in which 
the QTLs underlying a set of traits that represented all 
major subsystems of the bony skeleton were mapped in 
inbred mice that were selected for increased or reduced 
body size30. A total of 102 QTLs for 70 traits were identi‑
fied. Despite the finding that the most pleiotropic QTL 
affects 30 traits, the median degree of pleiotropy is  
only six traits, or 8.6% of the traits examined. The 
frequency distribution of the degree of pleiotropy is 
L‑shaped, indicating that most QTLs affect only a  
few traits, whereas a small number of QTLs affect many 
traits (FIG. 3Aa). Because the phenotypic variations in 
these mice resulted from strong artificial selection, one 
wonders whether the result applies to natural variations. 
Albert and colleagues mapped QTLs of 54 position 
traits describing body shapes of two threespine stickle‑
back species: an ancestral Pacific marine form and a 
derived species that inhabits a geologically young lake33. 
Their finding is similar to that of the mouse study: the 

median degree of pleiotropy is only one trait, or 1.9% of 
the traits examined, although the most pleiotropic QTL 
underlies 30 traits (FIG. 3Ab).

QTL studies of expression traits. In addition to morpho‑
logical traits, QTLs of many gene expression traits have 
been mapped in several model organisms. Gene expres‑
sion is under the control of both cis‑elements and trans‑
factors. A cis‑element tends to have low pleiotropy, 
unless it regulates the expression of a trans‑factor, which 
tends to affect the expression of many genes. Brem and 
colleagues identified QTLs underlying expression dif‑
ferences of 570 genes between a common laboratory 
strain and a vineyard‑isolated strain of the budding 
yeast Saccharomyces cerevisiae34. They found that 32% 
of the expression traits showed ‘self‑linkage’, meaning 
that the QTL of the expression difference of a gene is 
located within 10 kb of the gene. Such expression varia‑
tion is likely to be caused by cis‑element changes. After 
dividing the yeast genome into 661 segments of 20 kb, 
they found eight segments that affect 7–94 expression 
traits in trans, whereas the rest of the segments each 
affect zero to a few expression traits. even when the 
segments that affect no trait are excluded, the median 
number of expression traits that is affected by a seg‑
ment is only one (or 0.18% of the traits examined). In 
another study, the QTLs underlying the expression 
variations of 984 human genes in immobilized B cells 
were identified35. After dividing the genome into 491 
segments, each with 5 Mb of DnA, the authors found 
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that the most pleiotropic segment affects 31 of the 984 
expression traits and that the second‑most pleiotropic 
segment affects 25 traits. however, the vast majority of 
the 491 segments affect no more than two traits, or 0.2% 
of all examined traits.

Knockout and knockdown studies. one drawback of 
QTL studies is that the mapping resolution may be so low 
that one QTL may include multiple genes. consequently,  
the degree of pleiotropy can be overestimated.

In recent years, many genes have been either 
knocked out or knocked down in several model organ‑
isms. Phenotypes of these mutants provide genome‑
scale information about gene pleiotropy without the 
confounding effects of linked mutations. Wang and col‑
leagues reported recently that the median degree of gene 
pleiotropy is only a few per cent of the total number of 
traits examined in yeast, nematode worms and mice28 
(FIGS 3Ba–Be). For example, 2,449 genes were found to 
affect at least one of the 253 morphological traits of 
yeast that were examined systematically. Despite the 
fact that the most pleiotropic gene affects more than 
150 traits, the median degree of pleiotropy is only seven 
(or 2% of traits). one potential caveat of such a meta‑
analysis is that sometimes not all mutants of a species 
are phenotyped for the same set of traits (although this 
is not a problem in the yeast study above). For example, 
4,915 mouse genes are known to affect one or more of 
308 traits, but most mouse mutants have been pheno‑
typed for only a small subset of these traits. Because 
scientists tend to phenotype traits that are suspected to 
be affected in a mutant, incomplete phenotyping tends 
to overestimate gene pleiotropy that is measured by the 
percentage of affected traits. Furthermore, on average, 
natural mutations are much milder than are knockout 
or knockdown effects. Thus, it is likely that the detect‑
able number of affected traits is lower for natural  
mutations than for knockout or knockdown effects.

In summary, overwhelming empirical data, from 
unicellular eukaryotes such as yeast to complex verte‑
brates such as humans and mice, show that pleiotropy 
is generally low. Given the potential upward biases of 
current methods in estimating pleiotropy, the actual 
level of pleiotropy may be even lower. nonetheless, all 
empirical measures of pleiotropy are limited by the 
power of the measurement, as mentioned in the previ‑
ous section. Admittedly, some of the studies have lim‑
ited power. For instance, we estimate that, in the yeast 
morphological pleiotropy data (FIG. 3Ba), a mutational 
effect with an expected size of one standard deviation 
in the wild‑type distribution is detected in only 17% of 
cases. This makes it also possible that the actual degree 
of pleiotropy is greater than what has been revealed. 
But the unrevealed degree of pleiotropy must have 
much lower functional and evolutionary significance, 
owing to a much smaller effect size. In addition to the 
generally low pleiotropy, the GPM is highly modular 
(BOX 3) and the per‑trait phenotypic effect of mutations 
increases with the number of pleiotropic effects (BOX 4). 
These findings have significant implications for our 
understanding of disease, development and evolution.
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Box 3 | evidence for modular pleiotropy

It is often observed that certain groups of traits tend to co-vary among individuals of 
the same species or across different species, forming variational modules66. 
Variational modularity occurs when a set of traits are co-determined by a set of 
genes, a phenomenon known as modular pleiotropy48. The genotype–phenotype map 
(GPM) can be viewed as a bipartite network that is composed of two types of nodes: 
gene nodes and trait nodes. A link between a gene node and a trait node indicates 
that the gene affects the trait. It was recently shown in yeast, nematode worms and 
mice that the bipartite network of the GPM is highly modular, forming groups  
of traits that are co-affected by groups of genes28 (see the figure; circles  
represent genes and squares represent traits). For instance, the modularity in the 
mouse gene–trait bipartite network is 238 standard deviations greater than that 
expected from the same network in which the gene–trait links are randomly rewired. 
The evolutionary origin of the modularity in the GPM is unclear, and several models, 
either with or without natural selection for modularity, have been proposed66. 
Regardless of its origin, modular pleiotropy further constrains the pleiotropic effects 
of mutations, because a mutation with modular pleiotropy is more likely to have 
smaller effects on unrelated traits than on related traits. 

Figure is modified, with permission, from REF. 28 © (2010) US National Academy  
of Sciences.

the molecular basis of pleiotropy
Type I and type II pleiotropy. Despite the importance of 
pleiotropy and its long history of study in genetics, little 
is known about its molecular basis. A central question in 
this regard is whether pleiotropy is conferred by multiple 
molecular functions of a gene product, which is referred 
to as type I pleiotropy, or by multiple morphological and 
physiological consequences of a single molecular func‑
tion, which is referred to as type II pleiotropy. This dis‑
tinction goes back to 1938, to Grüneberg, who called 
them ‘genuine’ and ‘spurious’ pleiotropy, respectively36 
— terms that, in retrospect, seem unfortunate. In the 
wake of the acceptance of the ‘one gene, one enzyme’ 
hypothesis, it was assumed that type II pleiotropy would 
be the most frequent, if not the only, form of pleiotropy1. 
however, the discovery of multiple functional domains 
in the same protein and the discovery of alternative splic‑
ing, which produces different molecular species from the 
same gene locus, reopened the issue.

An example of type I pleiotropy comes from human 
serum albumin, which has a crucial role in maintaining 
the osmotic pressure that is needed for proper distribu‑
tion of body fluids between intravascular compartments 
and body tissues. Serum albumin also acts as a plasma 
carrier by nonspecifically binding several hydropho‑
bic steroid hormones, and as a transport protein for 
haemin and fatty acids. Furthermore, it is involved in 
the oxidation of nitric oxide by binding this molecule 

in its hydrophobic core37. Structural analysis revealed 
two distinct binding sites in serum albumin that allow 
its interaction with different ligands38. The yeast HIS7 
gene represents a case of type II pleiotropy. HIS7 encodes 
glutamine amidotransferase, which is used in both histi‑
dine biosynthesis and purine nucleotide monophosphate 
biosynthesis. Thus, loss of HIS7 leads to the shortage of 
multiple necessary metabolites (see the Saccharomyces 
Genome Database).

Is pleiotropy mostly of type I or type II? This ques‑
tion was addressed by analysing yeast gene pleiotropy39. 
Interestingly, no significant correlation was found 
between the degree of pleiotropy of a gene and the 
number of molecular functions of that gene. There is also 
no correlation between gene pleiotropy and the number 
of domains in a protein. Among enzyme genes, there is 
no correlation between pleiotropy and the number of 
catalytic activities of the enzyme. By contrast, there is a 
positive correlation between pleiotropy and the number 
of cellular components to which the gene product is 
localized. There is also a positive correlation between 
pleiotropy and the number of biological processes in 
which a gene engages. These findings indicate that, at 
least in yeast, pleiotropy is mostly of type II39.

Evolutionary and disease implications of type II plei-
otropy. If we measure organismal complexity by the 
number of recognizably different types of cells in 
an organism, then this property can be said to have 
increased markedly from prokaryotes to advanced mul‑
ticellular eukaryotes such as vertebrates and flowering 
plants40. however, the number of genes has increased 
only about fourfold41. This disparity has necessarily 
resulted in an increase in average gene pleiotropy dur‑
ing the evolution of complex organisms. The finding 
that pleiotropy is primarily of type II suggests that the 
increase in average gene pleiotropy during evolution is 
probably realized by the recruitment of existing genes 
into new biological processes (rather than the acquisi‑
tion of new molecular functions), which presumably 
can occur, for example, by changes in tissue expression, 
subcellular localization and interaction partners, as well 
as by context‑sensitive transcription.

As mentioned, pleiotropic effects of mutations 
underlie some human diseases. In principle, the GPM 
constructed from model organisms such as the labora‑
tory mouse can guide the search for genes that, when 
mutated, cause human diseases. Such an approach can 
also aid the construction of the gene–disease map, which 
is also known as the diseasome42. conversely, the disea‑
some informs us about the relationship between genes 
and phenotypic defects, and thus can be used for infer‑
ring the prevalence and role of pleiotropy in human dis‑
ease. It is commonly believed that different alleles of a 
gene will exhibit pleiotropic effects on different subsets of 
traits43. Although this situation is possible44, if the pleio‑
tropic effects of a gene are usually conferred by the same 
molecular function39, it would be difficult to isolate alleles 
of pleiotropic genes that affect only one trait. This consid‑
eration is relevant to human genetics, in which isolation 
of symptom‑specific alleles is thought to be important 
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for developing effective treatments24. our current under‑
standing of the molecular basis of pleiotropy suggests 
that developing drugs that target only one particular  
phenotypic effect of a pleiotropic gene could be futile.

Another question raised about the mechanistic 
nature of pleiotropy is the degree to which pleiotropy 
is itself genetically variable. cheverud and collabora‑
tors have addressed this issue by developing a new QTL 
mapping method. This method identifies genetic fac‑
tors that change the statistical relationship between two 
or more characters45,46. These factors have been called 
relationship QTLs (rQTLs). A number of studies45,46 
have shown that a considerable number of rQTLs can 
be identified in interbreeding populations of mice, sug‑
gesting that there is ample opportunity for variation in 
pleiotropic effects.

the ‘cost of pleiotropy’
The analysis of Fisher’s geometric model (FGM) of adap‑
tation (BOX 1) predicts that the rate of adaptation should 

greatly decrease with the complexity of the organism. 
The concept of the ‘cost of complexity’, however, should 
be more properly called the ‘cost of pleiotropy’, as the 
classical versions of the FGM assume that every muta‑
tion potentially affects all traits of an organism. This 
position has been called ‘universal pleiotropy’ and has 
been the reigning paradigm in population genetics 
theory43. With universal pleiotropy, the complexity of 
an organism, measured by the total number of quasi‑
independent traits, equals that of pleiotropy. however, 
there is an alternative model that assumes that muta‑
tions are more structured and tend to affect only subsets 
of characters. This model is variously known as ‘vari‑
ational modularity’ or ‘restricted pleiotropy’ (REFS 47,48). 
empirical evidence against universal and in favour of 
restricted pleiotropy, reviewed above and in BOX 3, shows  
that restricted pleiotropy is the predominant pattern. 
With restricted pleiotropy, the rate of evolution depends 
on the degree of pleiotropy of individual mutations 
rather than on the complexity of the organism49.

 × 

Box 4 | pleiotropic scaling of gene effects

What is the total effect size of a mutation on all traits that 
are affected by the mutation? Intuitively, one may think 
that the total effect size of a mutation is a constant,  
such that mutations that affect more traits have a smaller 
average effect per trait. This is known as the invariant total 
effect model11. Alternatively, one may think that the effect 
size of a mutation is constant per trait, such that the total 
effect size rises with the number of traits that are affected 
by the mutation. This is known as the Euclidean 
superposition model12,58,67. The total effect size of a 
mutation can be calculated by the Euclidean distance:

Σ
where n is the mutation’s degree of pleiotropy and Z

i
 is  

the mutation’s effect on trait i measured by the Z-score30. 
If we express the scaling relationship between T

E
 and n 

by T
E
 = anb, the invariant total effect model predicts b = 0, 

whereas the Euclidean superposition model predicts 
b = 0.5. Unexpectedly, it was found that b is significantly greater than 0.5 in the mouse skeletal QTL data30,  
suggesting that the per-trait effect size of a QTL increases with the number of traits affected by the QTL.

One important caveat, however, is that each QTL in the mouse study may include multiple genes, which could lead 
to an overestimation of b68. To rectify this problem, Wang and colleagues estimated b using the phenotypic data of 
yeast gene knockout strains28. They again observed b to be greater than 0.5, with its 95% confidence interval between 
0.590 and 0.612 (see the figure; R is the correlation coefficient). Interestingly, they found that the conditions that are 
sufficient for b to exceed 0.5 are that the effect-size distribution of each gene is normal and that the standard 
deviation of the normal distribution varies among genes. They also excluded the possibility that the observation is 
simply an artefact of limited accuracy in measuring effect size. Thus, the counterintuitive phenomenon of b > 0.5 may 
have a simple cause. Because the conditions for b > 0.5 are easy to satisfy, b > 0.5 is probably a widespread 
phenomenon across the tree of life.

The observation of b > 0.5 means that the per-trait effect size of a mutation increases with the number of traits 
that are affected by the mutation. When this scaling property is considered, the cost of complexity or cost of 
pleiotropy is substantially alleviated, such that the adaptation rate is no longer highest for the least pleiotropic 
genotype–phenotype map28. The reason is that this scaling property causes a greater probability of fixation and a 
larger amount of fitness gain when a beneficial mutation occurs in a more pleiotropic gene than in a less 
pleiotropic gene. This counteracts the lower frequency of beneficial mutations that is seen in more pleiotropic 
genes, resulting in an interesting situation in which organisms with intermediate levels of pleiotropy are predicted 
to adapt most rapidly28. The pleiotropy level associated with the highest adaptation rate is maximized when b falls 
in a narrow range between 0.56 and 0.79, which happens to include the observed value of 0.60 from yeast28. 

Figure is modified, with permission, from REF. 28 © (2010) US National Academy of Sciences.
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of course, the FGM is in many ways a simplification.  
A lot of recent work has generalized the model by relax‑
ing some or all of these assumptions50–57. The main 
result of these studies is that in a more general model 
the number of traits has a smaller effect on the rate of 
evolution than in the original FGM. For instance, allow‑
ing for heterogeneity in mutation effects and in selection 
intensities decreases the impact of the total number of 
traits on evolvability. This result is consistent with the 
perspective expressed above about the cost of pleiotropy, 
which states that it is the amount of pleiotropy per muta‑
tion that is important, rather than the total number of 
characters affected. Differences in mutational effects, 
statistically, lead to restricted pleiotropy, in which only a 
small set of characters is greatly affected by the mutation,  
and others much less so.

Another simplification of the FGM is that the rate 
of evolution is limited by the arrival of new mutations, 
rather than by the amount of genetic variation that 
segregates in a population. Models that estimate the 
evolvability of genetically variable populations, using 
quantitative genetic models, come to qualitatively differ‑
ent results than do those that follow the FGM mutation 

accumulation approach. For instance, in quantitative 
genetic models, the dimensionality of the phenotype does 
not affect the rate of evolution58; higher levels of pleiot‑
ropy are predicted to increase the rate of evolution59, and 
evolvability depends only on genetic co‑variance rather 
than pleiotropy per se60. It will be important to reconcile 
the results from these different modelling approaches.

Conclusion: whence evolvability?
The problem of explaining the evolvability of complex 
organisms has fundamentally changed because of recent 
advances in data acquisition and theoretical modelling. 
The new data show that previous estimates of the cost 
of complexity are fundamentally flawed, because their 
basic assumptions are not empirically supported. The 
most important differences from the traditional picture 
are that it is now recognized that: pleiotropy is highly 
restricted; the total effect size scales more than additively 
with the number of pleiotropic effects (BOX 4); and the 
rate of evolution that is predicted from the FGM is a 
function of pleiotropy rather than of organismal com‑
plexity (BOX 1). now the problem is to explain how the 
GPM has acquired this structure.
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