Matzger Research Group

December, 2016: Congratulations to now Dr. Jon Bennion for defending his dissertation!

September, 2016: First years Ryan, Jinhee, and Greg have joined the lab as semester rotators! Also, undergraduates Andy and Ahmet have joined the group.

We bid farewell to Dr. Nipuni-Dhanesha H. Gamage. Good luck to you and your family in Portland, Oregon!

June, 2016: Summer rotator Jessi and visiting undergraduates Elaine and Ericka have joined the lab!

Energetic Materials

Traditional methods of improving the power and stability of energetic materials have focused primarily on modifying chemical structure, uncovering denser polymorphs, or formulating composite materials. Cocrystallization, a method that combines existing compounds into a single crystal lattice to realize new and unique materials, is an alternative way to achieve significant improvements while avoiding the challenges and uncertainty associated with traditional methods. By cocrystallizing energetic compounds of complementary oxygen balance, stability, or density, novel and attractive energetic materials are created. Furthermore, energetic cocrystals have the potential to act as smart materials by offering solid state properties more complex than those of pure materials.

Recent Publications

McDonald, K. A.; Seth, S.; Matzger, A. J. "Coordination Polymers with High Energy Density: An Emerging Class of Explosives" Cryst. Growth Des., 2015, 15, 5963-5972 (online)

Bennion, J. C.; McBain, A.; Son, S. F.; Matzger, A. J. "Design and Synthesis of a Series of Nitrogen-Rich Energetic Cocrystals of 5,5'-Dinitro-2H,2H'-3,3'-bi-1,2,4-triazole (DNBT)" Cryst. Growth Des., 2015, 15, 2545-2549 (online)

Landenberger, K. B.; Bolton, O.; Matzger, A. J. "Energetic-Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization" J. Am. Chem. Soc., 2015, 137, 5074-5079 (online)

Landenberger, K. B.; Bolton, O. J.; Matzger, A. J. "Two Isostructural Explosive Cocrystals with Significantly Different Thermodynamic Stabilities" Angew. Chem. Int. Ed., 2013, 52, 6468-6471 (online)

Updated May 2016