Chapter 2 Solution Manual

Written by: Albert Liu

2.1:

For a wavelength of $\lambda=1 \mu \mathrm{~m}$, an energy density of $2 \times 10^{-9} \frac{J}{\mathrm{~cm}^{3}}$ corresponds to a photon density:

$$
\begin{equation*}
N_{p}=\frac{2 \times 10^{-9}}{\left(\frac{h c}{1 \mu m}\right)}=1.01 \times 10^{10} \frac{\text { photons }}{c m^{3}} \tag{1}
\end{equation*}
$$

The rate of absorption events per atom with its lower state occupied $\left(f_{1}=1, f_{2}=0\right)$ for a rate constant $C=1.5 \times 10^{-7} \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$ is then:

$$
\begin{align*}
\frac{1}{N} \frac{d N_{p}}{d t} & =-C N_{p} \\
& =1508.296 \frac{\text { transitions }}{s} \tag{2}
\end{align*}
$$

which corresponds to a time of 0.663 ms between transitions.

2.2:

We first note that two levels corresponding to light emitted at $\lambda=880 \mathrm{~nm}$ corresponds to an energy difference of:

$$
\begin{equation*}
\Delta E=\frac{h c}{\lambda}=2.26 \times 10^{-19} J \tag{3}
\end{equation*}
$$

If the Fermi level is midway between the levels, it is separated from each level by $1.13 \times 10^{-19} \mathrm{~J}$. At a temperature of $T=300 K$, the occupation probability for each level is given by:

$$
\begin{align*}
& f\left(E_{\text {upper }}\right)=\frac{1}{1+\exp \left(\frac{1.13 \times 10^{-19}}{k_{B}(300)}\right)}=1.4 \times 10^{-12} \tag{4}\\
& f\left(E_{\text {lower }}\right)=\frac{1}{1+\exp \left(\frac{-1.13 \times 10^{-19}}{k_{B}(300)}\right)}=1-1.4 \times 10^{-12} \tag{5}
\end{align*}
$$

For a atomic density of $N_{a}=10^{18} \mathrm{~cm}^{-3}$, the electron densities in each level are given by:

$$
\begin{align*}
& N_{\text {upper }}=10^{18}\left(1.4 \times 10^{-12}\right)=1.4 \times 10^{6} \mathrm{~cm}^{-3} \tag{6}\\
& N_{\text {lower }}=10^{18}-N_{\text {upper }} \tag{7}
\end{align*}
$$

For a photon density of $N_{p h}=10^{10} \mathrm{~cm}^{-3}$, the net transition rate in a volume V is given by:

$$
\begin{align*}
\frac{d N_{p h}}{d t} & =C\left(N_{a}\right)\left(f_{2}-f_{1}\right) N_{p h} \\
& \approx-C N_{a} N_{p h} \\
& =-1.5 \times 10^{21} \tag{8}
\end{align*}
$$

where we ignore the downward transitions rate since it is 12 orders of magnitude smaller than the upward transition rate. Decreasing photon population corresponds to upward transitions.

2.3:

We first note that at equilibrium (when the Fermi level is in the middle of the bandgap), the difference between the two levels and the Fermi energy is $E_{2}-E_{F}=E_{F}-E_{1}=0.7 \mathrm{eV}$. Out of equilibrium, the energy differences become:

$$
\begin{align*}
& E_{2}-E_{F c}=0.7-\frac{1}{2}\left(E_{F c}-E_{F v}\right) \tag{9}\\
& E_{F v}-E_{1}=0.7-\frac{1}{2}\left(E_{F c}-E_{F v}\right) \tag{10}
\end{align*}
$$

The occupation probabilities are then:

$$
\begin{align*}
& f\left(E_{2}\right)=\frac{1}{1+\exp \left(\frac{0.7-\frac{1}{2}\left(E_{F c}-E_{F v}\right)}{k_{B} T}\right)} \tag{11}\\
& f\left(E_{1}\right)=\frac{1}{1+\exp \left(\frac{\frac{1}{2}\left(E_{F c}-E_{F v}\right)-0.7}{k_{B} T}\right)} \tag{12}
\end{align*}
$$

Plotting the difference:

The point at which the curve crosses $f_{2}-f_{1}$ represents the onset of population inversion, the critical condition necessary for optical gain.

2.4:

The condition for gain is for the occupation probability of the conduction band to be greater than that of the valence band:

$$
\begin{equation*}
f\left(E_{c b}\right)>f\left(E_{v b}\right) \leftrightarrow \frac{1}{1+\exp \left(\frac{E_{c b}-E_{F c}}{k_{B} T}\right)}>\frac{1}{1+\exp \left(\frac{E_{v b}-E_{F v}}{k_{B} T}\right)} \tag{13}
\end{equation*}
$$

This condition can be rewritten as follows:

$$
\begin{align*}
& \frac{1+\exp \left(\frac{E_{v b}-E_{F v}}{k_{B} T}\right)}{\left[1+\exp \left(\frac{E_{v b}-E_{F v}}{k_{B} T}\right)\right]\left[1+\exp \left(\frac{E_{c b}-E_{F c}}{k_{B} T}\right)\right]}>\frac{1+\exp \left(\frac{E_{c b}-E_{F c}}{k_{B} T}\right)}{\left[1+\exp \left(\frac{E_{v b}-E_{F v}}{k_{B} T}\right)\right]\left[1+\exp \left(\frac{E_{c b}-E_{F c}}{k_{B} T}\right)\right]} \\
& 1+\exp \left(\frac{E_{v b}-E_{F v}}{k_{B} T}\right)>1+\exp \left(\frac{E_{c b}-E_{F c}}{k_{B} T}\right) \\
& E_{v b}-E_{F v}>E_{c b}-E_{F c} \\
& E_{F c}-E_{F v}>E_{c b}-E_{v b} \tag{14}
\end{align*}
$$

We have thus derived the Bernard-Duraffourg condition.

2.5:

We first note that from the curve in problem (2.3), the occupation probability difference at $\Delta E_{F}=1.45 \mathrm{eV}$ is found to be:

$$
\begin{equation*}
f_{2}-f_{1}=0.4487 \quad\left(\text { at } \Delta E_{F}=1.45 \mathrm{eV}\right) \tag{15}
\end{equation*}
$$

For the parameters given, the gain is thus:

$$
\begin{equation*}
G=\frac{C N n}{c}\left(f_{2}-f_{1}\right)=897.4 \tag{16}
\end{equation*}
$$

which is also the maximum gain since only one photon energy can induce transitions between the two-level system.

2.6:

The intensity of the light as a function of distance traveled L is given by:

$$
\begin{equation*}
I(L)=I_{0} e^{G L} \tag{17}
\end{equation*}
$$

For the intensity to be tripled, we have the condition:

$$
\begin{align*}
& 3 I_{0}=I_{0} e^{G L} \\
& \rightarrow L=\frac{\ln (3)}{G}=0.055 \mathrm{~cm} \tag{18}
\end{align*}
$$

