Chapter 1 Solution Manual

Written by: Albert Liu

1.1:

Since glass has negligible absorption, we can approximate the index as purely real and find for the reflectivity:

$$
\begin{align*}
R & =\frac{(n-1)^{2}}{(n+1)^{2}} \\
& =.0413 \tag{1}
\end{align*}
$$

The transmission of the interface is thus:

$$
\begin{align*}
T & =1-R \\
& =.9587 \tag{2}
\end{align*}
$$

For a glass window, there are two interfaces, which means the transmission of the window is:

$$
\begin{equation*}
T^{\text {window }}=T^{2}=.9191 \tag{3}
\end{equation*}
$$

1.2:

From table 1.4, we have the index for fused silica and dense flint glass:

$$
\begin{equation*}
n^{f s}=1.460 \quad n^{d f}=1.746 \tag{4}
\end{equation*}
$$

The ratio of their reflectivities is thus:

$$
\begin{align*}
\frac{R^{f s}}{R^{d f}} & =\frac{\left(n^{f s}-1\right)^{2}\left(n^{d f}+1\right)^{2}}{\left(n^{f s}+1\right)^{2}\left(n^{d f}-1\right)^{2}} \\
& =.4738 \tag{5}
\end{align*}
$$

1.3:

We are given the complex dielectric constant of CdTe at $\lambda=500 \mathrm{~nm}$:

$$
\begin{equation*}
\tilde{\epsilon}_{r}=\epsilon_{1}+i \epsilon_{2}=8.92+i 2.29 \tag{6}
\end{equation*}
$$

We can then find the real and imaginary parts of the index:

$$
\begin{equation*}
n=\frac{1}{\sqrt{2}} \sqrt{\epsilon_{1}+\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}=2.96 \quad \kappa=\frac{1}{\sqrt{2}} \sqrt{-\epsilon_{1}+\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}}=0.38 \tag{7}
\end{equation*}
$$

The absorption coefficient and phase velocity in CdTe are thus:

$$
\begin{equation*}
\alpha=\frac{4 \pi \kappa}{\lambda}=9.55 \times 10^{6} m^{-1} \quad v=\frac{c}{n}=1.014 \times 10^{8} \frac{m}{s} \tag{8}
\end{equation*}
$$

with a reflectivity:

$$
\begin{equation*}
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=25.19 \% \tag{9}
\end{equation*}
$$

1.4:

For the absorption of 90% of the light through a thickness z, we have the condition:

$$
\begin{align*}
& 0.1=\frac{I(z)}{I(0)}=e^{-\left(1.3 \times 10^{5}\right) z} \\
& \rightarrow z=17.71 \mu m \tag{10}
\end{align*}
$$

1.5:

We first find the imaginary part of the index:

$$
\begin{equation*}
\kappa=\frac{\alpha \lambda}{4 \pi}=.083 \tag{11}
\end{equation*}
$$

The reflectivity of each interface is thus:

$$
\begin{equation*}
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=32.81 \% \tag{12}
\end{equation*}
$$

The transmission coefficient of the plate is thus:

$$
\begin{equation*}
T=\frac{(1-R)^{2} e^{-\alpha \ell}}{1-R^{2} e^{-2 \alpha \ell}}=3.35 \% \tag{13}
\end{equation*}
$$

Noting that the optical density does not incorporate reflection losses, the optical density is then:

$$
\begin{equation*}
O D=0.434 \alpha \ell=1.13 \tag{14}
\end{equation*}
$$

1.6:

We can find the absorption coefficient of sea water at 700 nm according to:

$$
\begin{align*}
& .002=e^{-\alpha(10)} \\
& \rightarrow \alpha=.621 m^{-1} \tag{15}
\end{align*}
$$

The complex part of the index is thus:

$$
\begin{equation*}
\kappa=\frac{\alpha \lambda}{4 \pi}=3.462 \times 10^{-8} \tag{16}
\end{equation*}
$$

The complex dielectric constant is thus:

$$
\begin{align*}
\tilde{\epsilon}_{r} & =\left(n^{2}-\kappa^{2}\right)+i 2 n \kappa \\
& =1.7689+i\left(9.21 \times 10^{-8}\right) \tag{17}
\end{align*}
$$

1.7:

The color yellow can be formed by mixing red and green (no blue). We thus would expect a single absoprtion peak in the blue.

1.8:

(a)

The incident beam intensity transmitted into the slab is given by $I_{0}\left(1-R_{1}\right)$. The different transmitted beams are given by:

$$
\begin{align*}
& I_{1}=I_{0}\left(1-R_{1}\right)\left(1-R_{2}\right) e^{-\alpha \ell} \\
& I_{2}=I_{0}\left(1-R_{1}\right)\left(1-R_{2}\right) R_{2} R_{1} e^{-3 \alpha \ell} \\
& I_{3}=I_{0}\left(1-R_{1}\right)\left(1-R_{2}\right) R_{2} R_{1} R_{2} R_{1} e^{-5 \alpha \ell} \\
& \vdots \tag{18}
\end{align*}
$$

The total transmitted intensity is thus:

$$
\begin{align*}
I(\ell) & =I_{0}\left(1-R_{1}\right)\left(1-R_{2}\right) e^{-\alpha \ell} \sum_{n=0}^{\infty}\left(R_{1} R_{2} e^{-2 \alpha \ell}\right)^{n} \\
& =I_{0} \frac{\left(1-R_{1}\right)\left(1-R_{2}\right) e^{-\alpha \ell}}{1-R_{1} R_{2} e^{-2 \alpha \ell}} \tag{19}
\end{align*}
$$

which gives the transmission coefficient:

$$
\begin{equation*}
T=\frac{I(\ell)}{I_{0}}=\frac{\left(1-R_{1}\right)\left(1-R_{2}\right) e^{-\alpha \ell}}{1-R_{1} R_{2} e^{-2 \alpha \ell}} \tag{20}
\end{equation*}
$$

(b) The error between (1.8) and the equation incorporating the reflections for $R_{1}=R_{2}=R$ is:

$$
\begin{align*}
\text { Error } & =\frac{(1-R)^{2} e^{-\alpha \ell}}{1-R^{2} e^{-2 \alpha \ell}}-(1-R)^{2} e^{-\alpha \ell} \\
& =(1-R)^{2} e^{-\alpha \ell}\left[\frac{1}{1-R^{2} e^{-2 \alpha \ell}}-1\right] \tag{21}
\end{align*}
$$

In the approximation $n \gg \kappa$, the reflectivity for silicon is:

$$
\begin{equation*}
R=\frac{(3.44-1)^{2}}{(3.44+1)^{2}}=29.75 \% \tag{22}
\end{equation*}
$$

(i) For $\alpha \ell=0$, the error is:

$$
\begin{equation*}
\text { Error }=4.79 \% \tag{23}
\end{equation*}
$$

(ii) For $\alpha \ell=1$, the error is:

$$
\begin{equation*}
\text { Error }=0.22 \% \tag{24}
\end{equation*}
$$

(iii) The reflectivity of the sapphire interface is:

$$
\begin{equation*}
R=\frac{(1.77-1)^{2}}{(1.77+1)^{2}}=7.73 \% \tag{25}
\end{equation*}
$$

which gives an error:

$$
\begin{equation*}
\text { Error }=.511 \% \tag{26}
\end{equation*}
$$

We thus see that the reflections can be neglected in two cases: (1) Low-index materials. (2) High-index materials with a high absorption coefficient.

1.9:

(a) To include interference effects, we must calculate the fields, not intensities. The optical path difference between E_{1} and E_{2} is given by:

$$
\begin{equation*}
\delta=\frac{2 n d}{\cos (\theta)}-2 d \tan (\theta) \sin (\phi) \tag{27}
\end{equation*}
$$

which corresponds to a phase difference of:

$$
\begin{align*}
\Delta \phi & =\frac{2 \pi}{\lambda} \delta=\frac{4 \pi d}{\lambda \cos (\theta)}[n-\sin (\theta) \sin (\phi)] \\
& =\frac{2 \pi}{\lambda} \delta=\frac{4 \pi d}{\lambda \cos (\theta)}[n-\sin (\theta) \sin (\phi)] \\
& =\frac{4 \pi n d}{\lambda \cos (\theta)}\left[1-\sin ^{2}(\theta)\right] \\
& =\frac{4 \pi n d}{\lambda} \cos (\theta) \tag{28}
\end{align*}
$$

The transmitted fields are given by ${ }^{1}$:

$$
\begin{align*}
& E_{1}=E_{0}(1-R) e^{-\frac{\alpha}{2} \ell} \\
& E_{2}=E_{0}(1-R)^{2} R e^{-3 \frac{\alpha}{2} \ell} e^{-i \Delta \phi} \\
& E_{3}=E_{0}(1-R)^{3} R^{2} e^{-5 \frac{\alpha}{2} \ell} e^{-2 i \Delta \phi} \\
& \vdots \tag{29}
\end{align*}
$$

which gives the total transmitted field:

$$
\begin{align*}
E_{T} & =E_{0}(1-R) e^{-\frac{\alpha}{2} \ell} \sum_{n=0}^{\infty}\left(R e^{-\alpha \ell} e^{-i \Delta \phi}\right)^{n} \\
& =\frac{(1-R) e^{-\frac{\alpha}{2} \ell}}{1-R e^{-\alpha \ell} e^{-i \Delta \phi}} \tag{30}
\end{align*}
$$

The transmitted intensity is then:

$$
\begin{equation*}
I_{T}=\left|E_{T}\right|^{2}=\frac{E_{0}^{2}(1-R)^{2} e^{-\alpha \ell}}{1-2 \operatorname{Re}^{-\alpha \ell} \cos (\Delta \phi)+R^{2} e^{-2 \alpha \ell}} \tag{31}
\end{equation*}
$$

(b) The reflected fields are then:

$$
\begin{align*}
& E_{1}^{\prime}=E_{0} \sqrt{R} \\
& E_{2}^{\prime}=E_{0} \sqrt{R}(1-R) e^{-\alpha \ell} e^{-i \Delta \phi} e^{-i \pi} \\
& E_{3}^{\prime}=E_{0} \sqrt{R}(1-R)^{2} e^{-2 \alpha \ell} e^{-2 i \Delta \phi} e^{-i 2 \pi} \\
& \vdots \tag{32}
\end{align*}
$$

which gives the total reflected field:

$$
\begin{align*}
E_{R} & =E_{0} \sqrt{R} \sum_{n=0}^{\infty}\left[(1-R) e^{-\alpha \ell} e^{-i \Delta \phi} e^{-i \pi}\right]^{n} \\
& =\frac{E_{0} \sqrt{R}}{1-(1-R) e^{-\alpha \ell} e^{-i \Delta \phi} e^{-i \pi}} \\
& =\frac{E_{0} \sqrt{R}\left(1+e^{-\alpha \ell} e^{i \Delta \phi} e^{i \pi}\right)}{1+R e^{-\alpha \ell} e^{-i \Delta \phi} e^{-i \pi}+2 i e^{-\alpha \ell} \sin (\Delta \phi+\pi)-(1-R) e^{-2 \alpha \ell}} \tag{33}
\end{align*}
$$

[^0]which gives the reflected intensity:
$$
I_{R}=\frac{E_{0}^{2} R}{1-2(1-R) e^{-\alpha \ell} \cos (\Delta \phi+\pi)+(1-R)^{2} e^{-2 \alpha \ell}}
$$

1.10:

Noting that the bandedge occurs at 870 nm , implying a bandgap of 1.428 eV , the imaginary part of the index is given by:

$$
\begin{equation*}
\kappa=\frac{\alpha \lambda}{4 \pi}=\frac{\lambda}{4 \pi} C \sqrt{\frac{2 \pi \hbar c}{\lambda}-1.428} \tag{34}
\end{equation*}
$$

which gives the reflection coefficient:

$$
\begin{equation*}
R=\frac{2.5^{2}+\kappa^{2}}{4.5^{2}+\kappa^{2}} \tag{35}
\end{equation*}
$$

Assuming normal incidence, the round trip phase difference through the platelet is:

$$
\begin{equation*}
\Delta \phi=\frac{4 \pi n d}{\lambda}=\frac{8.796 \times 10^{-5}}{\lambda} \tag{36}
\end{equation*}
$$

Plotting the reflectivity and transmissivity:

Note that below the bandedge $(\lambda>870 \mathrm{~nm})$, the platelet exhibits sharp etalon resonances and energy is conserved ($R+T=1$). Above the bandedge ($\lambda<870 \mathrm{~nm}$), the absorption dominates, and the interference effects are washed out.

1.11:

For a transparent material, we make the approximation $\alpha \approx 0$, which gives the interface reflectivity:

$$
\begin{equation*}
R \approx \frac{(n-1)^{2}}{(n+1)^{2}} \tag{37}
\end{equation*}
$$

We use the result from problem (1.8) to find the transmissivity in the incoherent limit:

$$
\begin{align*}
T & \approx \frac{(1-R)^{2}}{1-R^{2}} \\
& =\frac{\left[\frac{(n+1)^{2}-(n-1)^{2}}{(n+1)^{2}}\right]^{2}}{1-\frac{(n-1)^{4}}{(n+1)^{4}}} \\
& =\frac{\left[(n+1)^{2}-(n-1)^{2}\right]^{2}}{(n+1)^{4}-(n-1)^{4}} \\
& =\frac{2 n}{n^{2}+1} \tag{38}
\end{align*}
$$

1.12:

The reflectivity of an interface between two different materials of is given by equation (A.55):

$$
\begin{equation*}
R=\left|\frac{\tilde{n}_{2}-\tilde{n}_{1}}{\tilde{n}_{2}+\tilde{n}_{1}}\right|^{2} \tag{39}
\end{equation*}
$$

Ignoring absorption, the reflectivities of each interface are given by:

$$
\begin{gather*}
R_{1}=\left|\frac{2.5-1}{2.5+1}\right|^{2}=18.37 \% \quad \text { (Air-Medium) } \tag{40}\\
R_{2}=\left|\frac{1.5-2.5}{1.5+2.5}\right|^{2}=6.25 \% \quad \text { (Medium-Substrate) } \tag{41}\\
R_{3}=\left|\frac{1-1.5}{1+1.5}\right|^{2}=4 \% \quad \text { (Substrate-Air) } \tag{42}
\end{gather*}
$$

1.13:

We can write the optical density as:

$$
\begin{align*}
\text { O.D. } & =\log _{10}\left(\frac{I(\ell)}{I_{0}}\right) \\
& =\log _{10}(T) \\
& =\log _{10}\left(\frac{T^{2}}{T}\right) \\
& =2 \log _{10}(T)-\log _{10}(T) \\
& =-\log _{10}(T)+2 \log _{10}(1-R) \tag{43}
\end{align*}
$$

1.14:

Assuming $\epsilon_{2} \gg \epsilon_{1}$, we have at $\lambda=100 \mu m$:

$$
\begin{equation*}
\tilde{\epsilon}_{r} \approx i \frac{\sigma}{\epsilon_{0} \omega}=i \times 395460 \tag{44}
\end{equation*}
$$

The complex index is thus:

$$
\begin{align*}
\tilde{n} & =\sqrt{\tilde{\epsilon}_{r}} \\
& =\sqrt{i} \sqrt{395460} \\
& =\left(\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right) \times 628.86 \\
& =444.67(1+i) \tag{45}
\end{align*}
$$

The reflectivity can thus be found by:

$$
\begin{align*}
R & =\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}} \\
& =99.79 \% \tag{46}
\end{align*}
$$

[^0]: ${ }^{1}$ Note that the field reflection coefficient is equal to \sqrt{R}, but the field transmission coefficient is equal to $\sqrt{1-R}$.

