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10.1:

(a) Water molecules are highly polar, with the hydrogen atoms being positively charged and the
oxygen atom being negatively charged. They thus form highly polar hydrogen bonds in an ice
crystal, which should show strong infrared absorption.

(b) Solid germanium is composed of covalent bonds between germanium atoms, which should
show weak infrared absorption.

(c) Because argon has a filled outer shell, an argon solid is bound by only van der Waals forces. It
should therefore show weak infrared absorption.

(d) The Zn and Se atoms in ZnSe are bound by ionic bonds, which should show strong infrared
absorption.

(e) SiC is bound by triple bonds of primarily covalent character. However, the silicon atoms have
a slightly positive charge and the carbon atoms have a slightly negative charge. SiC should
therefore show modest infrared absorption.

10.2:

The dielectric constant with no damping is given by:

εr(ν) = ε∞ + (εst − ε∞)
ν2
TO

(ν2
TO − ν2)

(1)

At the frequency ν =
√

εst−1
ε∞−1νTO, the dielectric constant becomes unity:

εr = ε∞ + (εst − ε∞)
ν2
TO

ν2
TO

(
1− εst−1

ε∞−1

)
= ε∞ +

(εst − ε∞)(ε∞ − 1)

ε∞ − εst
= ε∞ + 1− ε∞
= 1 (2)

The reflectance then becomes zero:

R =

∣∣∣∣∣
√

1− 1√
1 + 1

∣∣∣∣∣
2

= 0 (3)
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10.3:

The lower and upper bounds of the Reststrahlen region are ν = νTO and ν = νLO, which result in
εr =∞ and εr = 0 respectively. For εst = 8.9, ε∞ = 1.9, and νTO = 9.2 THz, the two lower and

upper bounds are νTO = 9.2 THz and νLO =
√

εst
ε∞
νTO = 2.16νTO = 19.9 THz. This corresponds

to bounds of λ = 15 µm and λ = 33 µm.

10.4:

The dielectric constant with damping is given by:

εr = ε∞ + (εst − ε∞)
ν2
TO

ν2
TO − ν2 − iγν

(4)

For νTO = 10 THz, εst = 12.1, and ε∞ = 10, the LO phonon frequency is νLO =
√

εst
ε∞
νTO = 11

THz. In the middle of the Reststrahlen region (ν ≈ 10.5 THz), we find reflectivities (a) R = 0.894
and (b) R = 0.427 for γ = 1011s−1 and γ = 1012s−1 respectively. The two cases are plotted below:

where the dashed lines indicate the boundaries of the Reststrahlen region.

10.5:

(a) The frequencies of the TO and LO phonons represent the boundaries of the Reststrahlen
region. From the figure, we can estimate that the upper and lower boundaries are λ = 32 µm
(νTO = 9.38 THz) and λ = 29 µm (νLO = 10.34 THz).

(b) The low and high frequency reflectivities are Rst ≈ 0.3 and R∞ ≈ 0.25. This corresponds to
εst = 11.7 and ε∞ = 9.

(c) We see that the peak reflectivity is approximately 90%. Comparison with the figure above in
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the solution to problem 10.4, we see that the peak reflectivity for γ = 1011 s−1 is also
approximately 90%. We thus estimate that here, γ is also approximately 1011 s−1.

The ratio between the TO and LO phonons from part (a) is νLO
νTO

= 1.1. This does not completely

match the ratio from part (b)
√

εst
ε∞

= 1.3.

10.6:

At the TO phonon frequency, the dielectric constant is given by:

εr(νTO) = ε∞ + i(εst − ε∞)
νTO
γ

(5)

For νTO = 10 THz, εst = 12.1, and ε∞ = 10, the real and imaginary parts of the dielectric
constant are:

ε1 = 10 ε2 =
21 THz

γ
(6)

This is related to the κ variable:

κ =

√√
ε21 + ε22 − ε1

2
(7)

which then gives the absorption:

α =
2κωTO
c

(8)

For damping constants (a) γ = 1011 s−1 and (b) γ = 1012 s−1, we find α = 4.19× 106 m−1 and
α = 1.08× 106 m−1 respectively.

10.7:

From problem 10.4, we know that the peak reflectivity in the middle of the Reststrahl band
decreases with increasing damping of the TO phonon. Decrease of the reflectivity of NaCl with
increasing temperature is thus due to increasing damping γ.

10.8:

For εst = 12.5, ε∞ = 9.6, and νTO = 9.2 THz, the dielectric constant in the absence of damping at
ν = 8 THz is given by:

εr = 9.6 + (12.5− 9.6)
(9.2× 1012)2

(9.2× 1012)2 − (8× 1012)2
= 21.5 (9)

The corresponding polariton wavevector is thus:

q =

√
εrω

c
= 776904 m−1 (10)
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10.9:

(a) The maximum absorption between the cyclotron energy levels occurs at a wavelength:

hc

λ
=
e~B
m∗∗

(11)

For B = 3.4 T and λ = 306 µm, the polaron mass in n-type CdTe is:

m∗∗ =
eBλ

2πc
= 8.83× 10−32 kg = 0.1me (12)

(b) Given ε∞ = 7.1, εst = 10.2, and νLO = 5.1 THz, we find an electron-phonon coupling constant:

αep =
1

137

√
m∗∗c2

2hνLO

(
1

ε∞
− 1

εst

)
= 0.339 (13)

The rigid lattice effective mass can then be found:

m∗ = m∗∗
(

1− αep
6

)
= 8.33× 10−32 kg = 0.09me (14)

10.10:

Diamond is composed of covalently bonded carbon atoms, and is therefore nonpolar. Recall that
for nonpolar materials νLO = νTO, which means that there will only be one peak in the Raman
spectrum.

10.11:

For excitation using an argon laser at 514.5 nm (583.1 THz), the peaks at 528.6 nm (567.5 THz)
and 501.2 nm (598.6 THz) correspond to Stokes and anti-Stokes scattering processes involving
optical phonons of silicon respectively. The optical phonon frequency is found to be
νTO = νLO = 15.6 THz. Recall that for nonpolar materials such as silicon the longitudinal and
transverse optical phonon modes are degenerate.

The ratio between the two peaks at 300 Kelvin is given by:

Ianti-Stokes

IStokes
= e−h(15.6×1012)/kBT = 0.08 (15)

10.12:

Because the bonding mechanism of NaCl is predominantly ionic, the TO phonon modes will be
IR-active. Recalling the rule of mutual exclusion, which states that in centrosymmetric materials
IR-active modes are not Raman active and vice-versa, the TO phonon modes will not be Raman
active.
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10.13:

In Fig. 10.11 we are given the peaks seen in the Raman spectra of each material. The peak with
the (smaller)larger energy shift corresponds to the (TO)LO phonon mode, and we can estimate
their energies directly from the plot:

GaAs:

TO mode = 260 cm−1 = 32.24 meV LO mode = 280 cm−1 = 34.72 meV

InP:

TO mode = 300 cm−1 = 37.20 meV LO mode = 340 cm−1 = 42.16 meV

AlSb:

TO mode = 320 cm−1 = 39.68 meV LO mode = 340 cm−1 = 42.16 meV

GaP:

TO mode = 360 cm−1 = 44.64 meV LO mode = 400 cm−1 = 49.6 meV

In Fig. 10.5, the bounds of the Reststrahlen band for GaAs are around 270 cm−1 (33.48 meV)
and 290 cm−1 (35.96 meV) which correspond to the TO and LO phonon modes respectively.
These values are each around 1 meV higher than the values from the Raman spectra, which may
be attributed to human error.

10.14:

The wavevectors of the incoming photon and phonon are kphoton = nω
c and kphonon = Ω

vs
respectively. We can write down conservation of momentum:

k′photon = kphoton − kphonon (16)

If ω � Ω, the magnitude of the incoming and scattered wavevectors is approximately equal
k′photon ≈ kphoton. The conservation of momentum relation can thus be written:

sin

(
θ

2

)
=

kphonon

2kphoton
(17)

Rewriting the above equation in terms of the photon and phonon frequencies:

Ω = 2
nωvs
c

sin

(
θ

2

)
(18)

This is identical to equation 10.32, with Ω→ δω representing the frequency shift of the scattered
photons in a Brillouin scattering experiment.

10.15:

Using equation 10.32, where θ = 180 ◦C, we have:

10× 109 =
2(3)vs

488× 10−9
(19)
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which gives the speed of sound:

vs = 813.33
m

s
(20)

10.16:

(a) The r−1 is the familiar attractive term between the oppositely charged ions. The r−12 term is
due to the Pauli exclusion principle, which results in a repulsive force when the electrons get close
to each other (this term is seen in the Lennard-Jones potential for neutral atoms as well).

(b) Taking the derivative of U(r):

dU

dr
=

αe2

4πε0r2
− 12β

r13
(21)

we can set the derivative equal to zero to find the potential minimum:

αe2

4πε0r2
0

=
12β

r13
0

→ r11
0 =

48βπε0
αe2

(22)

(c) The Taylor expansion of the potential is given by:

U(r) = U(r0) +
dU

dr

∣∣∣∣
r=r0

(r − r0) +
1

2

d2U

dr2

∣∣∣∣
r=r0

(r − r0)2 +
1

3!

d3U

dr3

∣∣∣∣
r=r0

(r − r0)3 + . . . (23)

By definition, r0 is the displacement at which dU
dr = 0. The Taylor expansion of the potential,

with U(r0) as the reference energy, is thus:

U(r) =
1

2

d2U

dr2

∣∣∣∣
r=r0

(r − r0)2 +
1

3!

d3U

dr3

∣∣∣∣
r=r0

(r − r0)3 + . . . (24)

which we can relate to equation 10.33 by:

C2 =
1

2

d2U

dr2

∣∣∣∣
r=r0

C3 =
1

3!

d3U

dr3

∣∣∣∣
r=r0

(25)

To find C3, we thus compute the third-order derivative of U(r):

d2U

dr2
=

156β

r14
− αe2

2πε0r3
(26)

→ d3U

dr3
=

3αe2

2πε0r4
− 2184β

r15
(27)

We can thus write C3 in terms of r0:

C3 =
1

3!

d3U

dr3

∣∣∣∣
r=r0

=
1

3!

(
3αe2

2πε0r4
0

− 2184β

r15
0

)
(28)
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10.17:

The spectral width ∆ν of a Raman peak is related to the phonon lifetime τ by:

∆ν =
1

2πτ
(29)

For a spectral width of 0.85 cm−1 (25.48 GHz), we have a lifetime:

τ =
1

2π∆ν
= 6.25 ps (30)
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