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Written by: Albert Liu

3.1:

The Born-von Karman periodic boundary condition requires:

eikx = eik(x+L) (1)

This implies:

eikL = 1 = ein2π where n = 0, 1, 2 . . . (2)

The values of the wavevector are thus restricted to:

k =
n2π

L
(3)

Each value of k thus occupies a volume in k-space of:

Vk =

(
2π

L

)3

(4)

The density of k-states per sample volume is thus:

ρk =
1

VkL3
=

1

(2π)3
(5)

3.2:

The density of states is found by taking the derivative with respect to k of the number of k-states
in a sphere of radius k:

g(k) =
dN

dk

=
d

dk

[
4

3
πk3 1

(2π)3

]
=

k2

2π2
(6)

We have the dispersion relation for a parabolic band with effective mass m∗:

E(k) =
~2k2

2m∗
→ dE

dk
=

~2k

m∗
(7)
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or:

dk

dE
=
m∗

~2k

=
m∗

~2

√
~2

2m∗E

=

√
m∗

2~2E
(8)

Noting that the density of states may be expressed as g(k) = dN
dk , we can write:

g(E) = 2g(k)
dk

dE

=
k2

π2

√
m∗

2~2E

=
1

2π2

(
2m∗

~2

) 3
2 √

E (9)

3.3:

(a) The parity operation refers to the transformation r→ −r. In spherical coordinates, this
corresponds to θ → π − θ and φ→ φ+ π. The polar part of the spherical harmonic is changed
according to:

eim(φ+π) = (−1)meimφ (10)

The polynomial functions Pm` (cos(θ)) (called the associated Legendre polynomials) are given by:

Pm` (cos(θ)) = (−1)m(1− x2)
m
2
dm

dxm
(P`(cos(θ))) (11)

where P`(cos(θ)) are the Legendre polynomials given by:

P1(cos(θ)) = 1 P2(cos(θ)) = cos(θ) P3(cos(θ)) =
1

2

[
3cos2(θ)− 1

]
. . . (12)

We know that the parity operation changes the polynomials by:

Pm` (cos(π − θ)) = (−1)m(1− cos2(π − θ))
m
2
dm

dxm
(P`(cos(π − θ)))

= (−1)m(−1)m(−1)`(1− cos2(θ))
m
2
dm

dxm
(P`(cos(θ))) (13)

The spherical harmonics thus transform as:

Y`m(π − θ, φ+ π) = (−1)m(−1)m(−1)m(−1)`(1− cos2(θ))
m
2
dm

dxm
(P`(cos(θ)))e

imφ

= (−1)`Y`m(θ, φ) (14)

We thus see that the spherical harmonics are inversion symmetric for even values of ` and
inversion anti-symmetric for odd values of `.
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(b) We calculate the matrix element for the electric-dipole transition by breaking it up into two
parts1:

M =

∣∣∣∣−e ∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rY`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣
= e

∣∣∣∣∫ ∞
0

r2

[∫ π

0

∫ π

0
Y ∗`′m′(θ, φ)Y`m(θ, φ)rsin(θ)dφdθ +

∫ π

0

∫ 2π

π
Y ∗`′m′(θ, φ)Y`m(θ, φ)rsin(θ)dφdθ

]
dr

∣∣∣∣
= e

∣∣∣∣∫ ∞
0

r2

∫ π

0

∫ π

0
[Y ∗`′m′(θ, φ)Y`m(θ, φ)− Y ∗`′m′(π − θ, φ+ π)Y`m(π − θ, φ+ π)] rsin(θ)dφdθdr

∣∣∣∣
= e

∣∣∣∣∫ ∞
0

r2

∫ π

0

∫ π

0

[
Y ∗`′m′(θ, φ)Y`m(θ, φ)− (−1)`(−1)`

′
Y ∗`′m′(θ, φ)Y`m(θ, φ)

]
rsin(θ)dφdθdr

∣∣∣∣
= e

∣∣∣∣∫ ∞
0

r2

∫ π

0

∫ π

0

[
Y ∗`′m′(θ, φ)Y`m(θ, φ)− (−1)2`(−1)∆`Y ∗`′m′(θ, φ)Y`m(θ, φ)

]
rsin(θ)dφdθdr

∣∣∣∣
= e

∣∣∣∣∫ ∞
0

r2

∫ π

0

∫ π

0
Y ∗`′m′(θ, φ)Y`m(θ, φ)rsin(θ)dφdθdr

[
1− (−1)∆`

]∣∣∣∣ (15)

The matrix element is therefore non-zero only if ∆` = |`′ − `| is odd.

(c) We first examine the matrix element for light polarized in the ẑ direction:

Mz =

∣∣∣∣−eE0

∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rcos(θ)Y`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣ ẑ
=

∣∣∣∣−eE0

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0
e−i∆mφdφ

]∣∣∣∣ (16)

We see that the last term in the brackets equals 2π if ∆m = m′ −m = 0 and 0 otherwise.

For light polarized in the x̂ direction:

Mx =

∣∣∣∣−eE0

∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rcos(θ)cos(φ)Y`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣
=

∣∣∣∣−eE0

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0
e−i∆mφcos(φ)dφ

]∣∣∣∣
=

∣∣∣∣−eE0

2

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0

(
e−i(∆m−1)φ + e−i(∆m+1)φ

)
dφ

]∣∣∣∣
(17)

The last term in the brackets equals 2π if ∆m = ±1, and 0 otherwise. Doing the same calculation
for light polarized in the ŷ direction:

My =

∣∣∣∣−eE0

∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rcos(θ)sin(φ)Y`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣
=

∣∣∣∣−eE0

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0
e−i∆mφsin(φ)dφ

]∣∣∣∣
=

∣∣∣∣ieE0

2

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0

(
e−i(∆m−1)φ − e−i(∆m+1)φ

)
dφ

]∣∣∣∣
(18)

1Also recall that the transformation r→ −r corresponds to θ → π − θ and φ→ φ+ π.
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where the same reasoning as that for ŷ polarized light applies.

(d) We can write the circularly polarized field vectors in the form:

σ+ =
E0√

2
(x̂ + iŷ) σ− =

E0√
2

(x̂− iŷ) (19)

The matrix elements associated with each are given by:

Mσ+ =

∣∣∣∣−eE0√
2

∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rcos(θ) [cos(φ) + isin(φ)]Y`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣
=

∣∣∣∣−eE0√
2

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0
e−i(∆m−1)φdφ

]∣∣∣∣
Mσ− =

∣∣∣∣−eE0√
2

∫ ∞
0

∫ π

0

∫ 2π

0
Y ∗`′m′(θ, φ)rcos(θ) [cos(φ)− isin(φ)]Y`m(θ, φ)r2sin(θ)dφdθdr

∣∣∣∣
=

∣∣∣∣−eE0√
2

[∫ ∞
0

r3dr

] [∫ π

0
Pm

′
`′ (cosθ)Pm` (cosθ)cos(θ)sin(θ)dθ

] [∫ 2π

0
e−i(∆m+1)φdφ

]∣∣∣∣ (20)

we see that the matrix elements are non-zero only if ∆m = +1 and ∆m = −1 for σ+ and σ−

polarized light respectively.

3.6:

We plot the data in Table 3.4 below:

From the absorption plot of GaP, we see a tail beginning at ≈ 3.7eV . Since this data is taken at a
high temperature, this tail is a clear indication of phonon-assisted absorption across an indirect
gap, which tells us that GaP is an indirect semiconductor.

3.7:
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We would like to estimate the absorption coefficient at 1200nm or 1.036eV . We first note that
α(.85eV ) ≈ 6× 105m−1. From equation (3.25), we expect the ratio of the absorption coefficient at
1.036eV to that at .85eV to be:

α(1.036eV )

α(.85eV )
≈
√

1.036− .8√
.85− .8

→ α(1.036eV ) ≈ 1.304× 106m−1 (21)

3.8:

(a) The conduction and heavy hole bands energies are given by:

Ec = Eg +
~2k2

e

2m∗e
Ehh = −

~2k2
hh

2m∗hh
(22)

We ignore the negligible photon momentum as usual, which gives ke = khh = k. Energy
conservation for the heavy hole absorption of a 1.6eV photon thus gives:

1.6 = Ec − Ehh

= 1.424 +
~2k2

2

(
1

.067m0
+

1

.5m0

)
→ k = 5.24× 108m−1 (23)

For absorption from the light hole band, we find:

1.6 = 1.424 +
~2k2

2

(
1

.067m0
+

1

.08m0

)
→ k = 4.12× 108m−1 (24)

(b) The wavevector of a photon is given by:

k =
nE

~c
= 3.01× 107m−1 (25)

This is an order of magnitude less than the electron/hole momenta, so it is reasonable to ignore it.

(c) We first define the reduced masses for the light hole and heavy hole transitions:

µlh =

(
1

m∗e
+

1

m∗lh

)−1

= .037m0 and µhh =

(
1

m∗e
+

1

m∗hh

)−1

= .059m0 (26)

The ratio of the joint density of states for the heavy hole and light hole transitions is given by:

ghh(~ω)

glh(~ω)
=

(
µhh
µlh

) 3
2

= 2.02 (27)

(d) The lowest possible energy photon that can excite an electron from the split-off band is:

E = ∆ + Eg = 1.764eV (28)
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which corresponds to a wavelength of:

λ =
hc

E
= 704.7nm (29)

3.9:

The heavy hole states have the quantum numbers J = 3
2 and MJ = ±3

2 , and the light hole states
have the quantum numbers J = 3

2 and MJ = ±1
2 . We calculate the matrix elements for circularly

and linearly polarized light:

• σ−:

|Mσ− |2 =
1

2
(J +MJ)(J +MJ − 1)C =

{
3C (Heavy Hole)

C (Light Hole)
(30)

• σ+:

|Mσ+ |2 =
1

2
(J −MJ)(J −MJ − 1)C =

{
3C (Heavy Hole)

C (Light Hole)
(31)

• ẑ:

|Mẑ|2 = (J2 −MJ)2C =

{
225
16 C,

9
16C (Heavy Hole)

121
16 C,

49
16C (Light Hole)

(32)

3.10:

As found in problem (3.3), dipole transitions are only allowed if ∆m = 0 for ẑ polarized light and
∆m = ±1 or 0 for x̂ and ŷ polarized light. After accounting for spin, these same selection rules
apply, except for ∆MJ instead. Since for linearly polarized light there is no preference between
inducing spin down to spin up or spin up to spin down transitions. For circularly polarized light
however, we found that for σ+ light only ∆MJ = +1 transitions are allowed. This means only
spin down electrons will transition to spin up states and not the other way around. The same
reasoning applies to σ− light.

3.15:

A classical particle in a magnetic field feels the lorentz force:

F = e(v ×B) (33)

which gives, according to Newton’s second law, an acceleration normal to the particle’s velocity
given by:

an =
evB

m
(34)
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From basic classical mechanics, we also know the centripetal acceleration is given by:

an =
v2

r
(35)

where r is the radius of the particle’s orbit. Setting the two expressions equal to each other:

v =
erB

m
(36)

The angular frequency of the oscillation is given by:

ω = 2π
v

2πr
=
eB

m
(37)

3.16:

(a) As usual, we have the density of states:

g(E) = 2
g(k)
dE
dk

(38)

In a one-dimensional material of length L, periodic boundary conditions give a spacing between
k-values of 2π

L . The number of k-states in a length L is thus:

N =
L

2π
k (39)

which gives a k-space density of states:

g(k) =
dN

dk
=

L

2π
(40)

For a parabolic band, we have dE
dk = ~2k

m∗ = ~
√

2√
m∗

√
E. The density of states is thus:

g(E) =
L
√
m∗

~
√

2π

1√
E

(41)
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