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4.1:

The time-independent Schrodinger equation for the hydrogen atom is given by:
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The center of mass and relative coordinates r.,, and r,¢ respectively are given by:
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We can express r, and r. in terms of r,, and r,q:
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Noting that the second derivatives can be transformed as:
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The Laplacians for the electron and proton respectively can be recast as:
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The Schrodinger equation can thus be rewritten in the center of mass and relative coordinates as:
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where we’ve defined the total mass M and the reduced mass p by:

1 1 1
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4.2:
(a) We have the relative motion Hamiltonian:
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(b) We now try a solution of the form:
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which gives:
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For our ansatz to be a solution of the Schrodinger equation, the first term on the right must
vanish due to its dependence on 7,..;, which gives the exciton Bohr radius:
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Noting that the first term on the right vanishes, the eigenenergy is thus given by:
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The normalization constant C' is then given by:
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4.3:
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We have the wavefunction:
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with the probability density:
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The probability of finding the particle at a radius r is equivalent to the probability of finding it
between a radii r and r + dr:
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We find the maximum probability by:
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We now find the expectation value:
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4.4:

(a) This is of the same form as the solution used in (4.2) and (4.3), which were shown to be a
solution of the relative motion exciton Hamiltonian.

(b) We first find I:Irelwrel(rrela 07 ¢)
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The expectation value of the energy is given by:
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(¢) Minimizing the energy with respect to :
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which gives the corresponding energy:
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(d) We see that the ¢ found to minimize the energy is simply the Bohr radius, and the energy
found is also identical to that found in (4.2).

4.5:

(a) The Bohr model of the hydrogen atom assumes that the electron revolves around the nuclei as
a classical particle, but may only have angular momenta values of nh.

(b) The electron’s momentum is given by:
mur = nh n=12... (24)
The centripetal force of the electron is simply the Coulomb attraction between the electron and
proton:
2 2
e
—  —m= 25
4mer? r (25)
Combining the above two equations and using m = p (since the proton and electron masses are of
the same order of magnitude):
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The binding energy is given by:

e? 1,
S
dmwer 2
___ ke 1 pe” 1
~ (4me)2h2n? - 2(4me)2h2 n?
_pet 1
 3272e2h2 n2
_Bx :

e
3 where Ryx = 3952272 (27)

E, =




Fox - Optical Properties of Solids

(c) We see that the energy found in (4.2) is simply the ground state n = 1 energy.

(d) The peak of the probability distribution corresponds to the n = 1 orbit radius in the Bohr
model.

4.6:

The electron-hole reduced mass in ZnS is given by:

-1
= ! + ! = .1795 (28)
H= .28m0 .5m0 o o

The exciton Rydberg energy is thus:

R
Ry = B2 — 03916V (29)
moe€;
The n =1 and n = 2 exciton energies are thus:
E; = —-.0391eV  and FE3 = —.0098eV (30)

The highest excited phonon energies at room temperature are approximately:

Ephonon o 12 (300K) = .0259¢V (31)

max

We thus see that the excited phonons do not have enough energy to ionize the n = 1 excitons, but
can ionize the n = 2 excitons.

4.7

We have the reduced mass in InP:

I _1—0556 (32)
F=07mme T 2mg )  — 0000

The exciton Rydberg energy is thus:

mer

Rx

= .0049¢V (33)

which gives the n = 1 and n = 2 exciton binding energies:
FEp = —.0049¢V and FEy= —.0012¢V (34)

The corresponding wavelengths are:

h h
€ —8738um and Ay = ——— = 871.5nm (35)

N=
' E,+ E Ey+ By

which corresponds to a difference of 2.3nm.

4.9:
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We have the exciton Rydberg energy:

R
Ry = B2 — 4 15mev (36)
moe€r
The n =1 and n = 2 energies are given by:
Ey = —4.15meV  and FEj = —1.04meV (37)

The energy difference is 3.11meV, which corresponds to a wavelength of 398.4um.

4.10:

For the ground state exciton, the electron-hole separation is the exciton Bohr radius ax. We have
the explicit expressions from (4.5):

Ameh? pet
=r = Ry = ———— 38
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According to the Bohr model, the electric field produced by the electron (hole) at the hole
(electron) is given by:
1 e
€=
4de a§(
2R
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4.11:
For germanium, the reduced mass is given by:
: + A 0275 (40)
= =. m
H=\038mg  Imo 0
The exciton Rydberg energy (ground state exciton energy) is thus:
Rx = —F_ Ry = 1.46meV (41)
moe2
and the exciton Bohr radius (ground state exciton radius) is:
ax = mocy ag = 30.78nm (42)
I
The field magnitude at the electron and hole is:
2R Vv
€] = 25X = 94866.8— (43)
eax m
For a bias voltage Vj, the field across the junction is given by:
Vi — VL
€= == (44)
(2
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The voltage at which the field equals the ionization field is:

Vo = .74 — (94866.8) (2 x 107%) = .55V (45)
4.12:
The exciton cyclotron energy is given by:
B
Ep =h2 (46)
I
Setting this equal to the exciton Rydberg energy:
h@ _ uRy
o moe?
2
pu Ry
B = 4
- heme? (47)
For GaAs with u = 0.05mg and €, = 12.8, we find:
B =1.799T (48)
4.13:
For a vector potential of A = g (—y,x,0), the corresponding magnetic flux density is:
B=VxA
Ay s s A .
:E 0 yi—i—anj 04y 04, i
2 0z 0z Oz oy
= Bk (49)
From equation (B.17), we have the form of the Hamiltonian:
. . 2A-A
Hefyt+— (p-At+A -p)+ A
2m0 2m0
. e2B2 (22 + y?)
=Hy+ —= 50
0t 8mo (50)
where we’ve noted in the Coulomb gauge the operators p and A commute:
[p, A]f(r) = —ihV - (A f(r)) + ihA - (V f(r))
= —ih(V-A)f(r) —ihA -V f(r) +ihA - (Vf(r))
= —ih(V - A)f(r)
=0 (51)
which implies:
P-A+A -p=2p-A=-2iAV-A=0 (52)
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For excitons, the Hamiltonian above becomes:

e2B?

= 2y 53
o+ G @) (53

The expectation value of the energy for an exciton in a spherically symmetric (¢ = 0) energy state
n is thus:

A e2 B2
22 /9
~ B+ S <3 <r2>)

= FEy+ AFE where AFE =

(Yn | (2 + %) | ¥n)

e2B?
12

<r2> (54)
where we used the fact that the symmetry of the ¢ = 0 state gives:

<x2> = <y2> = <22> (for spherically symmetric states) (55)

4.14:

The Rydberg energy and the Bohr radius of excitons in GaAs are given by Table 4.1:
Rx = 4.2 meV ax =13 nm (56)
The diamagnetic shift is thus given by:

e B?
AE = o a% = 0.05 meV (57)

This corresponds to a frequency shift 11.95 GHz. The wavelength shift must be calculated by
including the Jacobian:

AN _ e
Af - f?
c
— A\ = _Afﬁ (58)
Given an exciton resonance at 1.515 eV (365.6 THz) under no magnetic field, we find a
wavelength shift of:
AN =—(11.95 x 10%) —————_ = 0.02
A (11.95 x 10 )(365.6 < 1012)2 0.0268 nm (59)
4.15:
We first find the exciton reduced mass:
= ! + ! - =0.171m (60)
H=\02mg " 12me) — 700
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The exciton Bohr radius in GaN is:
mo€y

ax = ag = 3.09nm (61)

which gives the n = 1 and n = 2 exciton radii:
r1 =3.09nm and 1o = 12.34nm (62)

The Mott densities are approximately:

3 3
Ny = —— =8.09x10*m™® and Np=—5 =1.27x10%m™* (63)
4mry 4mrs
4.16:
The kinetic energy %kBT corresponds to a momentum of:
p=V2mE = \/3mkgT (64)
which gives a deBroglie wavelength:
h h
ANdeB = — = ———= 65
B T \BmkpT (65)
The BEC inter-particle separation is:
4 1
57Td3 = 3
kpTe \ 2
2.612 (knl)
1
3 3 2mh?
<4(2.612)7T> mkpT, (66)

The ratio of A\gep and d is given by:

ol

d 3 h?  \/3mkgT,
MeB  \4(2.612)7 2mmkgT, h

(3 3

-~ \4(2.612)7 27

=0.31 (67)

W=

4.17:

When discussing BEC condensation of excitons, it is the center of mass motion that matters. We
thus consider the total exciton mass M = 1.7mg in equation 4.9. The BEC condensation
temperature is thus:

onh2 [/ N /3
= A — 171K
T Mkp (2.612) 7 (68)
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1.18:

The electron-hole radius for the n'” exciton in Nal is given by:

mo ETTL2

T apg =n? x 852 A (69)
The n =1 and n = 2 exciton radii are thus 8.52 Aand 3.41 nm. The n = 1 exciton radius is
comparable to the unit cell size 0.65 nm, so the Wannier model is not valid. However, the n = 2
exciton radius is an order of magnitude larger than the unit cell size, so the Wannier model is
valid.
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