Chapter 4 Solution Manual

Written by: Albert Liu

4.1:

The time-independent Schrodinger equation for the hydrogen atom is given by:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m_{p}} \nabla_{p}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{e^{2}}{4 \pi \epsilon\left|\mathbf{r}_{p}-\mathbf{r}_{e}\right|}\right] \psi\left(\mathbf{r}_{p}, \mathbf{r}_{e}\right)=E \psi\left(\mathbf{r}_{p}, \mathbf{r}_{e}\right) \tag{1}
\end{equation*}
$$

The center of mass and relative coordinates $\mathbf{r}_{c m}$ and $\mathbf{r}_{r e l}$ respectively are given by:

$$
\begin{equation*}
\mathbf{r}_{c m}=\frac{m_{p} \mathbf{r}_{p}+m_{e} \mathbf{r}_{e}}{m_{p}+m_{e}} \quad \mathbf{r}_{r e l}=\mathbf{r}_{p}-\mathbf{r}_{e} \tag{2}
\end{equation*}
$$

We can express \mathbf{r}_{p} and \mathbf{r}_{e} in terms of $\mathbf{r}_{c m}$ and $\mathbf{r}_{r e l}$:

$$
\begin{equation*}
\mathbf{r}_{p}=\mathbf{r}_{c m}+\frac{m_{e}}{m_{p}+m_{e}} \mathbf{r}_{r e l} \quad \mathbf{r}_{e}=\mathbf{r}_{c m}-\frac{m_{p}}{m_{p}+m_{e}} \mathbf{r}_{r e l} \tag{3}
\end{equation*}
$$

Noting that the second derivatives can be transformed as:

$$
\begin{aligned}
\frac{d^{2}}{d x_{p}^{2}} & =\frac{d}{d x_{p}}\left(\frac{d x_{c m}}{d x_{p}} \frac{d}{d x_{c m}}+\frac{d x_{r e l}}{d x_{p}} \frac{d}{d x_{r e l}}\right) \\
& =\frac{d^{2} x_{c m}}{d x_{p}^{2}} \frac{d}{d x_{c m}}+\left(\frac{d x_{c m}}{d x_{p}}\right)^{2} \frac{d^{2}}{d x_{c m}^{2}}+\frac{d^{2} x_{r e l}}{d x_{p}^{2}} \frac{d}{d x_{r e l}}+\left(\frac{d x_{r e l}}{d x_{p}}\right)^{2} \frac{d}{d x_{r e l}} \\
& =\left(\frac{m_{p}}{m_{p}+m_{e}}\right)^{2} \frac{d^{2}}{d x_{c m}^{2}}+\frac{d^{2}}{d x_{r e l}^{2}} \\
\frac{d^{2}}{d x_{e}^{2}} & =\frac{d}{d x_{e}}\left(\frac{d x_{c m}}{d x_{e}} \frac{d}{d x_{c m}}+\frac{d x_{r e l}}{d x_{e}} \frac{d}{d x_{r e l}}\right) \\
& =\frac{d^{2} x_{c m}}{d x_{e}^{2}} \frac{d}{d x_{c m}}+\left(\frac{d x_{c m}}{d x_{e}}\right)^{2} \frac{d^{2}}{d x_{c m}^{2}}+\frac{d^{2} x_{r e l}}{d x_{e}^{2}} \frac{d}{d x_{r e l}}+\left(\frac{d x_{r e l}}{d x_{e}}\right)^{2} \frac{d^{2}}{d x_{r e l}^{2}} \\
& =\left(\frac{m_{e}}{m_{p}+m_{e}}\right)^{2} \frac{d^{2}}{d x_{c m}^{2}}+\frac{d^{2}}{d x_{r e l}^{2}} \\
& \vdots
\end{aligned}
$$

The Laplacians for the electron and proton respectively can be recast as:

$$
\begin{equation*}
\nabla_{p}^{2}=\left(\frac{m_{p}}{m_{p}+m_{e}}\right)^{2} \nabla_{c m}^{2}+\nabla_{r e l}^{2} \quad \nabla_{e}^{2}=\left(\frac{m_{e}}{m_{p}+m_{e}}\right)^{2} \nabla_{c m}^{2}+\nabla_{r e l}^{2} \tag{6}
\end{equation*}
$$

The Schrodinger equation can thus be rewritten in the center of mass and relative coordinates as:

$$
\begin{equation*}
\underbrace{\left[-\frac{\hbar^{2}}{M} \nabla_{c m}^{2}\right.}_{\hat{H}_{c m}} \underbrace{\left.-\frac{\hbar^{2}}{2 \mu} \nabla_{r e l}^{2}-\frac{e^{2}}{4 \pi \epsilon r_{r e l}}\right]}_{\hat{H}_{r e l}} \psi\left(\mathbf{r}_{c m}, \mathbf{r}_{r e l}\right)=E \psi\left(\mathbf{r}_{c m}, \mathbf{r}_{r e l}\right) \tag{7}
\end{equation*}
$$

where we've defined the total mass M and the reduced mass μ by:

$$
\begin{equation*}
M=m_{p}+m_{e} \quad \frac{1}{\mu}=\frac{1}{m_{p}}+\frac{1}{m_{e}} \tag{8}
\end{equation*}
$$

4.2:

(a) We have the relative motion Hamiltonian:

$$
\begin{equation*}
\hat{H}_{r e l}=-\frac{\hbar^{2}}{2 \mu} \nabla_{r e l}^{2}-\frac{e^{2}}{4 \pi \epsilon r_{r e l}} \tag{9}
\end{equation*}
$$

(b) We now try a solution of the form:

$$
\begin{equation*}
\psi_{r e l}\left(r_{r e l}, \theta, \phi\right)=C e^{-\frac{r_{r e l}}{a_{0}}} \tag{10}
\end{equation*}
$$

which gives:

$$
\begin{align*}
E C e^{-\frac{r_{r e l}}{a_{0}}} & =-\frac{\hbar^{2}}{2 \mu} \frac{1}{r_{r e l}^{2}} \frac{d}{d r_{r e l}}\left(r_{r e l}^{2} \frac{d}{d r_{r e l}} C e^{-\frac{r_{r e l}}{a_{0}}}\right)-\frac{e^{2}}{4 \pi \epsilon r_{r e l}} C e^{-\frac{r_{r e l}}{a_{0}}} \\
& =\frac{\hbar^{2}}{2 \mu a_{0}} \frac{1}{r_{r e l}^{2}}\left(2 r_{r e l}-\frac{r_{r e l}^{2}}{a_{0}}\right) C e^{-\frac{r_{r e l}}{a_{0}}}-\frac{e^{2}}{4 \pi \epsilon r_{r e l}} C e^{-\frac{r_{r e l}}{a_{0}}} \\
& =\frac{1}{r_{r e l}}\left(\frac{\hbar^{2}}{\mu a_{0}}-\frac{e^{2}}{4 \pi \epsilon}\right) C e^{-\frac{r_{r e l}}{a_{0}}}-\frac{\hbar^{2}}{2 \mu a_{0}^{2}} C e^{-\frac{r_{r e l}}{a_{0}}} \tag{11}
\end{align*}
$$

For our ansatz to be a solution of the Schrodinger equation, the first term on the right must vanish due to its dependence on $r_{r e l}$, which gives the exciton Bohr radius:

$$
\begin{equation*}
a_{0}=\frac{4 \pi \epsilon \hbar^{2}}{\mu e^{2}} \tag{12}
\end{equation*}
$$

Noting that the first term on the right vanishes, the eigenenergy is thus given by:

$$
\begin{equation*}
E=-\frac{\hbar^{2}}{2 \mu a_{0}^{2}}=-\frac{\mu e^{4}}{32 \pi^{2} \epsilon^{2} \hbar^{2}} \tag{13}
\end{equation*}
$$

The normalization constant C is then given by:

$$
\begin{align*}
1 & =C^{2} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{2 r_{r e l}}{a_{0}}} r_{r e l}^{2} \sin (\theta) d r_{r e l} d \phi d \theta \\
& =C^{2}(4 \pi) \frac{a_{0}^{3}}{4} \\
\rightarrow & C=\frac{1}{\sqrt{\pi} a_{0}^{\frac{3}{2}}} \tag{14}
\end{align*}
$$

4.3:

We have the wavefunction:

$$
\begin{equation*}
\psi_{r e l}\left(r_{r e l}, \theta, \phi\right)=\frac{1}{\sqrt{\pi} a_{0}^{\frac{3}{2}}} e^{-\frac{r_{r e l}}{a_{0}}} \tag{15}
\end{equation*}
$$

with the probability density:

$$
\begin{equation*}
\left|\psi_{r e l}\right|^{2}=\frac{1}{\pi a_{0}^{3}} e^{-\frac{2 r_{r e l}}{a_{0}}} \tag{16}
\end{equation*}
$$

The probability of finding the particle at a radius r is equivalent to the probability of finding it between a radii r and $r+d r$:

$$
\begin{equation*}
P=\frac{1}{\pi a_{0}^{3}} e^{-\frac{2 r}{a_{0}}} 4 \pi r^{2} d r \tag{17}
\end{equation*}
$$

We find the maximum probability by:

$$
\begin{align*}
& 0=\frac{d P}{d r} \\
& \quad=\frac{4 \pi d r}{\pi a_{0}^{3}}\left(2 r_{\max }-\frac{2 r_{\max }^{2}}{a_{0}}\right) e^{-\frac{2 r_{\max }}{a_{0}}} \\
& \rightarrow r_{\max }=a_{0} \tag{18}
\end{align*}
$$

We now find the expectation value:

$$
\begin{align*}
\langle r\rangle & =\frac{1}{\pi a_{0}^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} e^{-\frac{2 r_{r e l}}{a_{0}}} r_{r e l}^{3} \sin (\theta) d r_{r e l} d \theta d \phi \\
& =\frac{3}{2} a_{0} \tag{19}
\end{align*}
$$

4.4:

(a) This is of the same form as the solution used in (4.2) and (4.3), which were shown to be a solution of the relative motion exciton Hamiltonian.
(b) We first find $\hat{H}_{r e l} \psi_{r e l}\left(r_{r e l}, \theta, \phi\right)$:

$$
\begin{align*}
\hat{H}_{r e l} \psi_{r e l}\left(r_{r e l}, \theta, \phi\right) & =\left[-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon r_{r e l}}\right] \frac{1}{\sqrt{\pi} \xi^{\frac{3}{2}}} e^{-\frac{r}{\xi}} \\
& =\frac{1}{\sqrt{\pi} \xi^{\frac{3}{2}} r_{r e l}}\left(\frac{\hbar^{2}}{\mu \xi}-\frac{e^{2}}{4 \pi \epsilon}\right) e^{-\frac{r_{r e l}}{\xi}}-\frac{\hbar^{2}}{2 \mu \xi^{2}} \frac{1}{\sqrt{\pi} \xi^{\frac{3}{2}}} e^{-\frac{r_{r e l}}{\xi}} \tag{20}
\end{align*}
$$

The expectation value of the energy is given by:

$$
\begin{align*}
\langle E\rangle & =\iiint \psi_{r e l}^{*} \hat{H} \psi_{r e l} r_{r e l}^{2} \sin (\theta) d r d \theta d \phi \\
& =\frac{1}{\pi \xi^{3}} \iiint\left[\frac{\hbar^{2}}{\mu \xi r_{r e l}}-\frac{e^{2}}{4 \pi \epsilon r_{r e l}}-\frac{\hbar^{2}}{2 \mu \xi^{2}}\right] e^{-\frac{2 r_{r e l}}{\xi}} r_{r e l}^{2} \sin (\theta) d r d \theta d \phi \\
& =\frac{\hbar^{2}}{2 \mu \xi^{2}}-\frac{e^{2}}{4 \pi \epsilon \xi} \tag{21}
\end{align*}
$$

(c) Minimizing the energy with respect to ξ :

$$
\begin{align*}
0 & =\frac{d\langle E\rangle}{d \xi} \\
& =\frac{e^{2}}{4 \pi \epsilon \xi^{2}}-\frac{\hbar^{2}}{\mu \xi^{3}} \\
\rightarrow \xi & =\frac{4 \pi \epsilon \hbar^{2}}{\mu e^{2}} \tag{22}
\end{align*}
$$

which gives the corresponding energy:

$$
\begin{align*}
\langle E\rangle & =\frac{\hbar^{2}}{2 \mu} \frac{\mu^{2} e^{4}}{(4 \pi \epsilon)^{2} \hbar^{4}}-\frac{e^{2}}{4 \pi \epsilon} \frac{\mu e^{2}}{4 \pi \epsilon \hbar^{2}} \\
& =-\frac{\mu e^{4}}{32 \pi^{2} \epsilon^{2} \hbar^{2}} \tag{23}
\end{align*}
$$

(d) We see that the ξ found to minimize the energy is simply the Bohr radius, and the energy found is also identical to that found in (4.2).

4.5:

(a) The Bohr model of the hydrogen atom assumes that the electron revolves around the nuclei as a classical particle, but may only have angular momenta values of $n \hbar$.
(b) The electron's momentum is given by:

$$
\begin{equation*}
m v r=n \hbar \quad n=1,2, \ldots \tag{24}
\end{equation*}
$$

The centripetal force of the electron is simply the Coulomb attraction between the electron and proton:

$$
\begin{equation*}
\frac{e^{2}}{4 \pi \epsilon r^{2}}=m \frac{v^{2}}{r} \tag{25}
\end{equation*}
$$

Combining the above two equations and using $m=\mu$ (since the proton and electron masses are of the same order of magnitude):

$$
\begin{align*}
& \frac{e^{2}}{4 \pi \epsilon r^{2}}=\mu \frac{n^{2} \hbar^{2}}{\mu^{2} r^{3}} \\
& \rightarrow r_{n}=\frac{4 \pi \epsilon \hbar^{2}}{\mu e^{2}} n^{2} \tag{26}
\end{align*}
$$

The binding energy is given by:

$$
\begin{align*}
E_{n} & =-\frac{e^{2}}{4 \pi \epsilon r}+\frac{1}{2} \mu v^{2} \\
& =-\frac{\mu e^{4}}{(4 \pi \epsilon)^{2} \hbar^{2}} \frac{1}{n^{2}}+\frac{\mu e^{4}}{2(4 \pi \epsilon)^{2} \hbar^{2}} \frac{1}{n^{2}} \\
& =-\frac{\mu e^{4}}{32 \pi^{2} \epsilon^{2} \hbar^{2}} \frac{1}{n^{2}} \\
& =-\frac{R_{X}}{n^{2}} \quad \text { where } \quad R_{X}=\frac{\mu e^{4}}{32 \pi^{2} \epsilon^{2} \hbar^{2}} \tag{27}
\end{align*}
$$

(c) We see that the energy found in (4.2) is simply the ground state $n=1$ energy.
(d) The peak of the probability distribution corresponds to the $n=1$ orbit radius in the Bohr model.

4.6:

The electron-hole reduced mass in ZnS is given by:

$$
\begin{equation*}
\mu=\left(\frac{1}{.28 m_{0}}+\frac{1}{.5 m_{0}}\right)^{-1}=.1795 m_{0} \tag{28}
\end{equation*}
$$

The exciton Rydberg energy is thus:

$$
\begin{equation*}
R_{X}=\frac{\mu R_{H}}{m_{0} \epsilon_{r}^{2}}=.0391 \mathrm{eV} \tag{29}
\end{equation*}
$$

The $n=1$ and $n=2$ exciton energies are thus:

$$
\begin{equation*}
E_{1}=-.0391 \mathrm{eV} \quad \text { and } \quad E_{2}=-.0098 \mathrm{eV} \tag{30}
\end{equation*}
$$

The highest excited phonon energies at room temperature are approximately:

$$
\begin{equation*}
E_{\max }^{\text {phonon }} \approx k_{B}(300 \mathrm{~K})=.0259 \mathrm{eV} \tag{31}
\end{equation*}
$$

We thus see that the excited phonons do not have enough energy to ionize the $n=1$ excitons, but can ionize the $n=2$ excitons.

4.7:

We have the reduced mass in InP:

$$
\begin{equation*}
\mu=\left(\frac{1}{.077 m_{0}}+\frac{1}{.2 m_{0}}\right)^{-1}=.0556 m_{0} \tag{32}
\end{equation*}
$$

The exciton Rydberg energy is thus:

$$
\begin{equation*}
R_{X}=\frac{\mu R_{H}}{m_{0} \epsilon_{r}^{2}}=.0049 \mathrm{eV} \tag{33}
\end{equation*}
$$

which gives the $n=1$ and $n=2$ exciton binding energies:

$$
\begin{equation*}
E_{1}=-.0049 \mathrm{eV} \quad \text { and } \quad E_{2}=-.0012 \mathrm{eV} \tag{34}
\end{equation*}
$$

The corresponding wavelengths are:

$$
\begin{equation*}
\lambda_{1}=\frac{h c}{E_{g}+E_{1}}=873.8 \mathrm{~nm} \quad \text { and } \quad \lambda_{2}=\frac{h c}{E_{g}+E_{2}}=871.5 \mathrm{~nm} \tag{35}
\end{equation*}
$$

which corresponds to a difference of 2.3 nm .

4.9:

We have the exciton Rydberg energy:

$$
\begin{equation*}
R_{X}=\frac{\mu R_{H}}{m_{0} \epsilon_{r}^{2}}=4.15 \mathrm{meV} \tag{36}
\end{equation*}
$$

The $n=1$ and $n=2$ energies are given by:

$$
\begin{equation*}
E_{1}=-4.15 \mathrm{meV} \quad \text { and } \quad E_{2}=-1.04 m e V \tag{37}
\end{equation*}
$$

The energy difference is 3.11 meV , which corresponds to a wavelength of $398.4 \mu \mathrm{~m}$.

4.10:

For the ground state exciton, the electron-hole separation is the exciton Bohr radius a_{X}. We have the explicit expressions from (4.5):

$$
\begin{equation*}
a_{X}=r_{1}=\frac{4 \pi \epsilon \hbar^{2}}{\mu e^{2}} \quad R_{X}=\frac{\mu e^{4}}{32 \pi^{2} \epsilon^{2} \hbar^{2}} \tag{38}
\end{equation*}
$$

According to the Bohr model, the electric field produced by the electron (hole) at the hole (electron) is given by:

$$
\begin{align*}
|\mathcal{E}| & =\frac{1}{4 \pi \epsilon} \frac{e}{a_{X}^{2}} \\
& =\frac{2 R_{X}}{e a_{X}} \tag{39}
\end{align*}
$$

4.11:

For germanium, the reduced mass is given by:

$$
\begin{equation*}
\mu=\left(\frac{1}{.038 m_{0}}+\frac{1}{.1 m_{0}}\right)^{-1}=.0275 m_{0} \tag{40}
\end{equation*}
$$

The exciton Rydberg energy (ground state exciton energy) is thus:

$$
\begin{equation*}
R_{X}=\frac{\mu}{m_{0} \epsilon_{r}^{2}} R_{H}=1.46 \mathrm{meV} \tag{41}
\end{equation*}
$$

and the exciton Bohr radius (ground state exciton radius) is:

$$
\begin{equation*}
a_{X}=\frac{m_{0} \epsilon_{r}}{\mu} a_{H}=30.78 \mathrm{~nm} \tag{42}
\end{equation*}
$$

The field magnitude at the electron and hole is:

$$
\begin{equation*}
|\mathcal{E}|=\frac{2 R_{X}}{e a_{X}}=94866.8 \frac{\mathrm{~V}}{\mathrm{~m}} \tag{43}
\end{equation*}
$$

For a bias voltage V_{0}, the field across the junction is given by:

$$
\begin{equation*}
|\mathcal{E}|=\frac{V_{b i}-V_{0}}{\ell_{i}} \tag{44}
\end{equation*}
$$

The voltage at which the field equals the ionization field is:

$$
\begin{equation*}
V_{0}=.74-(94866.8)\left(2 \times 10^{-6}\right)=.55 \mathrm{~V} \tag{45}
\end{equation*}
$$

4.12:

The exciton cyclotron energy is given by:

$$
\begin{equation*}
E_{B}=\hbar \frac{e B}{\mu} \tag{46}
\end{equation*}
$$

Setting this equal to the exciton Rydberg energy:

$$
\begin{align*}
\hbar \frac{e B}{\mu} & =\frac{\mu R_{H}}{m_{0} \epsilon_{r}^{2}} \\
\rightarrow B & =\frac{\mu^{2} R_{H}}{\hbar e m_{0} \epsilon_{r}^{2}} \tag{47}
\end{align*}
$$

For GaAs with $\mu=0.05 m_{0}$ and $\epsilon_{r}=12.8$, we find:

$$
\begin{equation*}
B=1.799 T \tag{48}
\end{equation*}
$$

4.13:

For a vector potential of $\mathbf{A}=\frac{B}{2}\langle-y, x, 0\rangle$, the corresponding magnetic flux density is:

$$
\begin{align*}
\mathbf{B} & =\nabla \times \mathbf{A} \\
& =\frac{B}{2}\left[-\frac{\partial A_{y}}{\partial z} \hat{\mathbf{i}}+\frac{\partial A_{x}}{\partial z} \hat{\mathbf{j}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{k}}\right] \\
& =B \hat{\mathbf{k}} \tag{49}
\end{align*}
$$

From equation (B.17), we have the form of the Hamiltonian:

$$
\begin{align*}
\hat{H} & =\hat{H}_{0}+\frac{e}{2 m_{0}}(\mathbf{p} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{p})+\frac{e^{2}(\mathbf{A} \cdot \mathbf{A})}{2 m_{0}} \\
& =\hat{H}_{0}+\frac{e^{2} B^{2}\left(x^{2}+y^{2}\right)}{8 m_{0}} \tag{50}
\end{align*}
$$

where we've noted in the Coulomb gauge the operators \mathbf{p} and \mathbf{A} commute:

$$
\begin{align*}
{[\mathbf{p}, \mathbf{A}] f(\mathbf{r}) } & =-i \hbar \nabla \cdot(\mathbf{A} f(\mathbf{r}))+i \hbar \mathbf{A} \cdot(\nabla f(\mathbf{r})) \\
& =-i \hbar(\nabla \cdot \mathbf{A}) f(\mathbf{r})-i \hbar \mathbf{A} \cdot \nabla f(\mathbf{r})+i \hbar \mathbf{A} \cdot(\nabla f(\mathbf{r})) \\
& =-i \hbar(\nabla \cdot \mathbf{A}) f(\mathbf{r}) \\
& =0 \tag{51}
\end{align*}
$$

which implies:

$$
\begin{equation*}
\mathbf{p} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{p}=2 \mathbf{p} \cdot \mathbf{A}=-2 i \hbar \nabla \cdot \mathbf{A}=0 \tag{52}
\end{equation*}
$$

For excitons, the Hamiltonian above becomes:

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\frac{e^{2} B^{2}}{8 \mu}\left(x^{2}+y^{2}\right) \tag{53}
\end{equation*}
$$

The expectation value of the energy for an exciton in a spherically symmetric $(\ell=0)$ energy state n is thus:

$$
\begin{align*}
\langle E\rangle & =\left\langle\psi_{n}\right| \hat{H}_{0}\left|\psi_{n}\right\rangle+\frac{e^{2} B^{2}}{8 \mu}\left\langle\psi_{n}\right|\left(x^{2}+y^{2}\right)\left|\psi_{n}\right\rangle \\
& =E_{0}+\frac{e^{2} B^{2}}{8 \mu}\left(\frac{2}{3}\left\langle r^{2}\right\rangle\right) \\
& =E_{0}+\Delta E \quad \text { where } \quad \Delta E=\frac{e^{2} B^{2}}{12 \mu}\left\langle r^{2}\right\rangle \tag{54}
\end{align*}
$$

where we used the fact that the symmetry of the $\ell=0$ state gives:

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\left\langle y^{2}\right\rangle=\left\langle z^{2}\right\rangle \quad \text { (for spherically symmetric states) } \tag{55}
\end{equation*}
$$

4.14:

The Rydberg energy and the Bohr radius of excitons in GaAs are given by Table 4.1:

$$
\begin{equation*}
R_{X}=4.2 \mathrm{meV} \quad a_{X}=13 \mathrm{~nm} \tag{56}
\end{equation*}
$$

The diamagnetic shift is thus given by:

$$
\begin{equation*}
\Delta E=\frac{e^{2} B^{2}}{12 \mu} a_{X}^{2}=0.05 \mathrm{meV} \tag{57}
\end{equation*}
$$

This corresponds to a frequency shift 11.95 GHz . The wavelength shift must be calculated by including the Jacobian:

$$
\begin{align*}
& \frac{\Delta \lambda}{\Delta f}=-\frac{c}{f^{2}} \\
& \rightarrow \Delta \lambda=-\Delta f \frac{c}{f^{2}} \tag{58}
\end{align*}
$$

Given an exciton resonance at $1.515 \mathrm{eV}(365.6 \mathrm{THz})$ under no magnetic field, we find a wavelength shift of:

$$
\begin{equation*}
\Delta \lambda=-\left(11.95 \times 10^{9}\right) \frac{c}{\left(365.6 \times 10^{12}\right)^{2}}=0.0268 \mathrm{~nm} \tag{59}
\end{equation*}
$$

4.15:

We first find the exciton reduced mass:

$$
\begin{equation*}
\mu=\left(\frac{1}{0.2 m_{0}}+\frac{1}{1.2 m_{0}}\right)^{-1}=0.171 m_{0} \tag{60}
\end{equation*}
$$

The exciton Bohr radius in GaN is:

$$
\begin{equation*}
a_{X}=\frac{m_{0} \epsilon_{r}}{\mu} a_{H}=3.09 \mathrm{~nm} \tag{61}
\end{equation*}
$$

which gives the $n=1$ and $n=2$ exciton radii:

$$
\begin{equation*}
r_{1}=3.09 \mathrm{~nm} \quad \text { and } \quad r_{2}=12.34 \mathrm{~nm} \tag{62}
\end{equation*}
$$

The Mott densities are approximately:

$$
\begin{equation*}
N_{1}=\frac{3}{4 \pi r_{1}^{3}}=8.09 \times 10^{24} \mathrm{~m}^{-3} \quad \text { and } \quad N_{2}=\frac{3}{4 \pi r_{2}^{3}}=1.27 \times 10^{23} \mathrm{~m}^{-1} \tag{63}
\end{equation*}
$$

4.16:

The kinetic energy $\frac{3}{2} k_{B} T$ corresponds to a momentum of:

$$
\begin{equation*}
p=\sqrt{2 m E}=\sqrt{3 m k_{B} T} \tag{64}
\end{equation*}
$$

which gives a deBroglie wavelength:

$$
\begin{equation*}
\lambda_{d e B}=\frac{h}{p}=\frac{h}{\sqrt{3 m k_{B} T}} \tag{65}
\end{equation*}
$$

The BEC inter-particle separation is:

$$
\begin{align*}
& \frac{4}{3} \pi d^{3}=\frac{1}{2.612\left(\frac{m k_{B} T_{c}}{2 \pi \hbar^{2}}\right)^{\frac{3}{2}}} \\
& \rightarrow d=\left(\frac{3}{4(2.612) \pi}\right)^{\frac{1}{3}} \sqrt{\frac{2 \pi \hbar^{2}}{m k_{B} T_{c}}} \tag{66}
\end{align*}
$$

The ratio of $\lambda_{d e B}$ and d is given by:

$$
\begin{align*}
\frac{d}{\lambda_{d e B}} & =\left(\frac{3}{4(2.612) \pi}\right)^{\frac{1}{3}} \sqrt{\frac{h^{2}}{2 \pi m k_{B} T_{c}}} \frac{\sqrt{3 m k_{B} T_{c}}}{h} \\
& =\left(\frac{3}{4(2.612) \pi}\right)^{\frac{1}{3}} \sqrt{\frac{3}{2 \pi}} \\
& =0.31 \tag{67}
\end{align*}
$$

4.17:

When discussing BEC condensation of excitons, it is the center of mass motion that matters. We thus consider the total exciton mass $M=1.7 m_{0}$ in equation 4.9. The BEC condensation temperature is thus:

$$
\begin{equation*}
T_{c}=\frac{2 \pi \hbar^{2}}{M k_{B}}\left(\frac{N}{2.612}\right)^{2 / 3}=17.1 \mathrm{~K} \tag{68}
\end{equation*}
$$

1.18:

The electron-hole radius for the $n^{\text {th }}$ exciton in NaI is given by:

$$
\begin{equation*}
r_{n}=\frac{m_{0} \epsilon_{r} n^{2}}{\mu} a_{H}=n^{2} \times 8.52 \AA \tag{69}
\end{equation*}
$$

The $n=1$ and $n=2$ exciton radii are thus $8.52 \AA$ and 3.41 nm . The $n=1$ exciton radius is comparable to the unit cell size 0.65 nm , so the Wannier model is not valid. However, the $n=2$ exciton radius is an order of magnitude larger than the unit cell size, so the Wannier model is valid.

