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4.1:

The time-independent Schrodinger equation for the hydrogen atom is given by:[
− ~2

2mp
∇2
p −

~2

2me
∇2
e −

e2

4πε|rp − re|

]
ψ(rp, re) = Eψ(rp, re) (1)

The center of mass and relative coordinates rcm and rrel respectively are given by:

rcm =
mprp +mere
mp +me

rrel = rp − re (2)

We can express rp and re in terms of rcm and rrel:

rp = rcm +
me

mp +me
rrel re = rcm −

mp

mp +me
rrel (3)

Noting that the second derivatives can be transformed as:

d2

dx2p
=

d

dxp

(
dxcm
dxp

d

dxcm
+
dxrel
dxp

d

dxrel

)
=
d2xcm
dx2p

d

dxcm
+

(
dxcm
dxp

)2 d2

dx2cm
+
d2xrel
dx2p

d

dxrel
+

(
dxrel
dxp

)2 d

dxrel

=

(
mp

mp +me

)2 d2

dx2cm
+

d2

dx2rel
(4)

d2

dx2e
=

d

dxe

(
dxcm
dxe

d

dxcm
+
dxrel
dxe

d

dxrel

)
=
d2xcm
dx2e

d

dxcm
+

(
dxcm
dxe

)2 d2

dx2cm
+
d2xrel
dx2e

d

dxrel
+

(
dxrel
dxe

)2 d2

dx2rel

=

(
me

mp +me

)2 d2

dx2cm
+

d2

dx2rel
(5)

...

The Laplacians for the electron and proton respectively can be recast as:

∇2
p =

(
mp

mp +me

)2

∇2
cm +∇2

rel ∇2
e =

(
me

mp +me

)2

∇2
cm +∇2

rel (6)

The Schrodinger equation can thus be rewritten in the center of mass and relative coordinates as:[
−~2

M
∇2
cm︸ ︷︷ ︸

Ĥcm

− ~2

2µ
∇2
rel −

e2

4πεrrel

]
︸ ︷︷ ︸

Ĥrel

ψ(rcm, rrel) = Eψ(rcm, rrel) (7)
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where we’ve defined the total mass M and the reduced mass µ by:

M = mp +me
1

µ
=

1

mp
+

1

me
(8)

4.2:

(a) We have the relative motion Hamiltonian:

Ĥrel = − ~2

2µ
∇2
rel −

e2

4πεrrel
(9)

(b) We now try a solution of the form:

ψrel(rrel, θ, φ) = Ce
− rrel

a0 (10)

which gives:

ECe
− rrel

a0 = − ~2

2µ

1

r2rel

d

drrel

(
r2rel

d

drrel
Ce
− rrel

a0

)
− e2

4πεrrel
Ce
− rrel

a0

=
~2

2µa0

1

r2rel

(
2rrel −

r2rel
a0

)
Ce
− rrel

a0 − e2

4πεrrel
Ce
− rrel

a0

=
1

rrel

(
~2

µa0
− e2

4πε

)
Ce
− rrel

a0 − ~2

2µa20
Ce
− rrel

a0 (11)

For our ansatz to be a solution of the Schrodinger equation, the first term on the right must
vanish due to its dependence on rrel, which gives the exciton Bohr radius:

a0 =
4πε~2

µe2
(12)

Noting that the first term on the right vanishes, the eigenenergy is thus given by:

E = − ~2

2µa20
= − µe4

32π2ε2~2
(13)

The normalization constant C is then given by:

1 = C2

∫ π

0

∫ 2π

0

∫ ∞
0

e
− 2rrel

a0 r2relsin(θ)drreldφdθ

= C2(4π)
a30
4

→ C =
1

√
πa

3
2
0

(14)

4.3:
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We have the wavefunction:

ψrel(rrel, θ, φ) =
1

√
πa

3
2
0

e
− rrel

a0 (15)

with the probability density:

|ψrel|2 =
1

πa30
e
− 2rrel

a0 (16)

The probability of finding the particle at a radius r is equivalent to the probability of finding it
between a radii r and r + dr:

P =
1

πa30
e
− 2r
a0 4πr2dr (17)

We find the maximum probability by:

0 =
dP

dr

=
4πdr

πa30

(
2rmax −

2r2max
a0

)
e
− 2rmax

a0

→ rmax = a0 (18)

We now find the expectation value:

〈r〉 =
1

πa30

∫ 2π

0

∫ π

0

∫ ∞
0

e
− 2rrel

a0 r3relsin(θ)drreldθdφ

=
3

2
a0 (19)

4.4:

(a) This is of the same form as the solution used in (4.2) and (4.3), which were shown to be a
solution of the relative motion exciton Hamiltonian.

(b) We first find Ĥrelψrel(rrel, θ, φ):

Ĥrelψrel(rrel, θ, φ) =

[
− ~2

2µ
∇2 − e2

4πεrrel

]
1

√
πξ

3
2

e
− r
ξ

=
1

√
πξ

3
2 rrel

(
~2

µξ
− e2

4πε

)
e
− rrel

ξ − ~2

2µξ2
1

√
πξ

3
2

e
− rrel

ξ (20)

The expectation value of the energy is given by:

〈E〉 =

∫∫∫
ψ∗relĤψrelr

2
relsin(θ)drdθdφ

=
1

πξ3

∫∫∫ [
~2

µξrrel
− e2

4πεrrel
− ~2

2µξ2

]
e
− 2rrel

ξ r2relsin(θ)drdθdφ

=
~2

2µξ2
− e2

4πεξ
(21)
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(c) Minimizing the energy with respect to ξ:

0 =
d 〈E〉
dξ

=
e2

4πεξ2
− ~2

µξ3

→ ξ =
4πε~2

µe2
(22)

which gives the corresponding energy:

〈E〉 =
~2

2µ

µ2e4

(4πε)2~4
− e2

4πε

µe2

4πε~2

= − µe4

32π2ε2~2
(23)

(d) We see that the ξ found to minimize the energy is simply the Bohr radius, and the energy
found is also identical to that found in (4.2).

4.5:

(a) The Bohr model of the hydrogen atom assumes that the electron revolves around the nuclei as
a classical particle, but may only have angular momenta values of n~.

(b) The electron’s momentum is given by:

mvr = n~ n = 1, 2, . . . (24)

The centripetal force of the electron is simply the Coulomb attraction between the electron and
proton:

e2

4πεr2
= m

v2

r
(25)

Combining the above two equations and using m = µ (since the proton and electron masses are of
the same order of magnitude):

e2

4πεr2
= µ

n2~2

µ2r3

→ rn =
4πε~2

µe2
n2 (26)

The binding energy is given by:

En = − e2

4πεr
+

1

2
µv2

= − µe4

(4πε)2~2
1

n2
+

µe4

2(4πε)2~2
1

n2

= − µe4

32π2ε2~2
1

n2

= −RX
n2

where RX =
µe4

32π2ε2~2
(27)
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(c) We see that the energy found in (4.2) is simply the ground state n = 1 energy.

(d) The peak of the probability distribution corresponds to the n = 1 orbit radius in the Bohr
model.

4.6:

The electron-hole reduced mass in ZnS is given by:

µ =

(
1

.28m0
+

1

.5m0

)−1
= .1795m0 (28)

The exciton Rydberg energy is thus:

RX =
µRH
m0ε2r

= .0391eV (29)

The n = 1 and n = 2 exciton energies are thus:

E1 = −.0391eV and E2 = −.0098eV (30)

The highest excited phonon energies at room temperature are approximately:

Ephonon
max ≈ kB(300K) = .0259eV (31)

We thus see that the excited phonons do not have enough energy to ionize the n = 1 excitons, but
can ionize the n = 2 excitons.

4.7:

We have the reduced mass in InP:

µ =

(
1

.077m0
+

1

.2m0

)−1
= .0556m0 (32)

The exciton Rydberg energy is thus:

RX =
µRH
m0ε2r

= .0049eV (33)

which gives the n = 1 and n = 2 exciton binding energies:

E1 = −.0049eV and E2 = −.0012eV (34)

The corresponding wavelengths are:

λ1 =
hc

Eg + E1
= 873.8nm and λ2 =

hc

Eg + E2
= 871.5nm (35)

which corresponds to a difference of 2.3nm.

4.9:
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We have the exciton Rydberg energy:

RX =
µRH
m0ε2r

= 4.15meV (36)

The n = 1 and n = 2 energies are given by:

E1 = −4.15meV and E2 = −1.04meV (37)

The energy difference is 3.11meV , which corresponds to a wavelength of 398.4µm.

4.10:

For the ground state exciton, the electron-hole separation is the exciton Bohr radius aX . We have
the explicit expressions from (4.5):

aX = r1 =
4πε~2

µe2
RX =

µe4

32π2ε2~2
(38)

According to the Bohr model, the electric field produced by the electron (hole) at the hole
(electron) is given by:

|E| = 1

4πε

e

a2X

=
2RX
eaX

(39)

4.11:

For germanium, the reduced mass is given by:

µ =

(
1

.038m0
+

1

.1m0

)−1
= .0275m0 (40)

The exciton Rydberg energy (ground state exciton energy) is thus:

RX =
µ

m0ε2r
RH = 1.46meV (41)

and the exciton Bohr radius (ground state exciton radius) is:

aX =
m0εr
µ

aH = 30.78nm (42)

The field magnitude at the electron and hole is:

|E| = 2RX
eaX

= 94866.8
V

m
(43)

For a bias voltage V0, the field across the junction is given by:

|E| = Vbi − V0
`i

(44)
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The voltage at which the field equals the ionization field is:

V0 = .74− (94866.8)
(
2× 10−6

)
= .55V (45)

4.12:

The exciton cyclotron energy is given by:

EB = ~
eB

µ
(46)

Setting this equal to the exciton Rydberg energy:

~
eB

µ
=
µRH
m0ε2r

→ B =
µ2RH
~em0ε2r

(47)

For GaAs with µ = 0.05m0 and εr = 12.8, we find:

B = 1.799T (48)

4.13:

For a vector potential of A = B
2 〈−y, x, 0〉, the corresponding magnetic flux density is:

B = ∇×A

=
B

2

[
−∂Ay
∂z

î +
∂Ax
∂z

ĵ +

(
∂Ay
∂x
− ∂Ax

∂y

)
k̂

]
= Bk̂ (49)

From equation (B.17), we have the form of the Hamiltonian:

Ĥ = Ĥ0 +
e

2m0
(p ·A + A · p) +

e2(A ·A)

2m0

= Ĥ0 +
e2B2(x2 + y2)

8m0
(50)

where we’ve noted in the Coulomb gauge the operators p and A commute:

[p,A]f(r) = −i~∇ · (Af(r)) + i~A · (∇f(r))

= −i~(∇ ·A)f(r)− i~A · ∇f(r) + i~A · (∇f(r))

= −i~(∇ ·A)f(r)

= 0 (51)

which implies:

p ·A + A · p = 2p ·A = −2i~∇ ·A = 0 (52)
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For excitons, the Hamiltonian above becomes:

Ĥ = Ĥ0 +
e2B2

8µ
(x2 + y2) (53)

The expectation value of the energy for an exciton in a spherically symmetric (` = 0) energy state
n is thus:

〈E〉 =
〈
ψn

∣∣∣ Ĥ0

∣∣∣ψn〉+
e2B2

8µ

〈
ψn
∣∣ (x2 + y2)

∣∣ψn〉
= E0 +

e2B2

8µ

(
2

3

〈
r2
〉)

= E0 + ∆E where ∆E =
e2B2

12µ

〈
r2
〉

(54)

where we used the fact that the symmetry of the ` = 0 state gives:〈
x2
〉

=
〈
y2
〉

=
〈
z2
〉

(for spherically symmetric states) (55)

4.14:

The Rydberg energy and the Bohr radius of excitons in GaAs are given by Table 4.1:

RX = 4.2 meV aX = 13 nm (56)

The diamagnetic shift is thus given by:

∆E =
e2B2

12µ
a2X = 0.05 meV (57)

This corresponds to a frequency shift 11.95 GHz. The wavelength shift must be calculated by
including the Jacobian:

∆λ

∆f
= − c

f2

→ ∆λ = −∆f
c

f2
(58)

Given an exciton resonance at 1.515 eV (365.6 THz) under no magnetic field, we find a
wavelength shift of:

∆λ = −(11.95× 109)
c

(365.6× 1012)2
= 0.0268 nm (59)

4.15:

We first find the exciton reduced mass:

µ =

(
1

0.2m0
+

1

1.2m0

)−1
= 0.171m0 (60)

8



Fox - Optical Properties of Solids

The exciton Bohr radius in GaN is:

aX =
m0εr
µ

aH = 3.09nm (61)

which gives the n = 1 and n = 2 exciton radii:

r1 = 3.09nm and r2 = 12.34nm (62)

The Mott densities are approximately:

N1 =
3

4πr31
= 8.09× 1024m−3 and N2 =

3

4πr32
= 1.27× 1023m−1 (63)

4.16:

The kinetic energy 3
2kBT corresponds to a momentum of:

p =
√

2mE =
√

3mkBT (64)

which gives a deBroglie wavelength:

λdeB =
h

p
=

h√
3mkBT

(65)

The BEC inter-particle separation is:

4

3
πd3 =

1

2.612
(
mkBTc
2π~2

) 3
2

→ d =

(
3

4(2.612)π

) 1
3

√
2π~2
mkBTc

(66)

The ratio of λdeB and d is given by:

d

λdeB
=

(
3

4(2.612)π

) 1
3

√
h2

2πmkBTc

√
3mkBTc
h

=

(
3

4(2.612)π

) 1
3

√
3

2π

= 0.31 (67)

4.17:

When discussing BEC condensation of excitons, it is the center of mass motion that matters. We
thus consider the total exciton mass M = 1.7m0 in equation 4.9. The BEC condensation
temperature is thus:

Tc =
2π~2

MkB

(
N

2.612

)2/3

= 17.1 K (68)
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1.18:

The electron-hole radius for the nth exciton in NaI is given by:

rn =
m0εrn

2

µ
aH = n2 × 8.52 Å (69)

The n = 1 and n = 2 exciton radii are thus 8.52 Åand 3.41 nm. The n = 1 exciton radius is
comparable to the unit cell size 0.65 nm, so the Wannier model is not valid. However, the n = 2
exciton radius is an order of magnitude larger than the unit cell size, so the Wannier model is
valid.

10


