Chapter 2 Solution Manual

Written by: Albert Liu

2.1:

We have the general eigenstate expansion of an arbitrary wavefunction:

$$
\begin{equation*}
|\Psi\rangle=\sum_{n} c_{n} e^{-i \frac{E_{n}}{\hbar} t}|n\rangle \tag{1}
\end{equation*}
$$

Substituting into the time-dependent Schrodinger equation:

$$
\sum_{n} i \hbar\left[\frac{\partial}{\partial t} c_{n}(t)-\frac{i}{\hbar} E_{n} c_{n}(t)\right] e^{-i \frac{E_{n}}{\hbar} t}|n\rangle=\sum_{n} c_{n}(t) e^{-i \frac{E_{n}}{\hbar} t}\left(\hat{H}_{0}+\hat{W}(t)\right)|n\rangle
$$

Operating from the left by $\langle m|$, we find:

$$
\begin{equation*}
\frac{\partial}{\partial t} c_{m}(t)=-\frac{i}{\hbar} \sum_{n} c_{n}(t) e^{-i \frac{E_{n}-E_{m}}{\hbar} t}\langle m| \hat{W}(t)|n\rangle \tag{2}
\end{equation*}
$$

2.2:

We have the coherent and incoherent states:

$$
\begin{align*}
\rho_{c} & =\left(\begin{array}{cc}
\frac{1}{2} & -\frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right) \quad \text { (coherent state) } \tag{3}\\
\rho_{i c} & =\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right) \quad \text { (incoherent state) } \tag{4}
\end{align*}
$$

We then note that the dipole operator has only off-diagonal elements:

$$
\mu=\left(\begin{array}{cc}
0 & \mu_{01} \tag{5}\\
\mu_{10} & 0
\end{array}\right)
$$

Then calculating the expectation value of the two states by (2.37):

$$
\begin{align*}
\langle\mu\rangle_{c} & =\operatorname{Tr}\left[\rho_{c} \mu\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
\frac{1}{2} & -\frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
0 & \mu_{01} \\
\mu_{10} & 0
\end{array}\right)\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
-\frac{i \mu_{10}}{2} & \frac{\mu_{01}}{2} \\
\frac{\mu_{10}}{2} & \frac{i \mu_{01}}{2}
\end{array}\right)\right] \\
& =\frac{i}{2}\left(\mu_{01}-\mu_{10}\right) \tag{6}
\end{align*}
$$

$$
\begin{align*}
\langle\mu\rangle_{i c} & =\operatorname{Tr}\left[\rho_{i c} \mu\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
0 & \mu_{01} \\
\mu_{10} & 0
\end{array}\right)\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
0 & \frac{\mu_{01}}{2} \\
\frac{\mu_{10}}{2} & 0
\end{array}\right)\right] \\
& =0 \tag{7}
\end{align*}
$$

2.3:

We again begin with a ground state population, which evolves along the pathway R_{2} according to:

$$
\begin{align*}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \xrightarrow{i \rho \mu_{0}}\left(\begin{array}{ll}
0 & i \\
0 & 0
\end{array}\right) \xrightarrow{t_{1}}\left(\begin{array}{cc}
0 & i e^{i \omega_{01} t_{1}} \\
0 & 0
\end{array}\right) \xrightarrow{i \rho \mu_{0} \mu_{1}}\left(\begin{array}{cc}
i e^{i \omega_{01} t_{1}} & 0 \\
0 & 0
\end{array}\right) \xrightarrow{i \mu_{2} \rho \mu_{0} \mu_{1}}\left(\begin{array}{cc}
0 & 0 \\
i e^{i \omega_{01} t_{1}} & 0
\end{array}\right) \xrightarrow{t_{3}} \\
& \left(\begin{array}{cc}
0 & 0 \\
i e^{-i \omega_{01}\left(t_{3}-t_{1}\right)} & 0
\end{array}\right) \xrightarrow{i \operatorname{Tr}\left[\mu_{3} \mu_{2} \rho \mu_{0} \mu_{1}\right]} i e^{-i \omega_{01}\left(t_{3}-t_{1}\right)} \tag{8}
\end{align*}
$$

and along the R_{5} pathway:

$$
\begin{align*}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \xrightarrow{i \mu_{0} \rho}\left(\begin{array}{ll}
0 & 0 \\
i & 0
\end{array}\right) \xrightarrow{t_{1}}\left(\begin{array}{cc}
0 & 0 \\
i e^{-i \omega_{01} t_{1}} & 0
\end{array}\right) \xrightarrow{i \mu_{1} \mu_{0} \rho}\left(\begin{array}{cc}
i e^{-i \omega_{01} t_{1}} & 0 \\
0 & 0
\end{array}\right) \xrightarrow{i \mu_{2} \mu_{1} \mu_{0} \rho}\left(\begin{array}{cc}
0 & 0 \\
i e^{-i \omega_{01} t_{1}} & 0
\end{array}\right) \xrightarrow{t_{3}} \\
& \left(\begin{array}{cc}
0 & 0 \\
i e^{-i \omega_{01}\left(t_{3}+t_{1}\right)} & 0
\end{array}\right) \xrightarrow{i \operatorname{Tr}\left[\mu_{3} \mu_{2} \mu_{1} \mu_{0} \rho\right]} i e^{-i \omega_{01}\left(t_{3}+t_{1}\right)} \tag{9}
\end{align*}
$$

We see that the R_{2} and R_{5} pathways both pass through the ground state after the second interaction, rather than through the excited state as in the R_{1} and R_{4} pathways.

2.4:

We now consider an initial population in the excited state:

$$
\rho(-\infty)=\left(\begin{array}{ll}
0 & 0 \tag{10}\\
0 & 1
\end{array}\right)
$$

The first interaction at $t=0$ gives:

$$
i \mu(0) \rho(-\infty)=i\left(\begin{array}{ll}
0 & 1 \tag{11}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & i \\
0 & 0
\end{array}\right)
$$

After propagating to $t=t_{1}$, the second interaction gives:

$$
\begin{align*}
i \operatorname{Tr}\left[\mu\left(t_{1}\right) \mu(0) \rho(-\infty)\right] & =i \operatorname{Tr}\left[\mu(0) \rho(-\infty) \mu\left(t_{1}\right)\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
0 & i e^{+i \omega_{01} t_{1}} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right] \\
& =\operatorname{Tr}\left[\left(\begin{array}{cc}
i e^{+i \omega_{01} t_{1}} & 0 \\
& 0
\end{array}\right)\right] \\
& =i e^{+i \omega_{01} t_{1}} \tag{12}
\end{align*}
$$

Note that we cycled the arguments in the trace to ensure that the system ended in the ground state to ensure energy conservation. The first order polarization correction for $\omega=\omega_{01}$ and without dephasing is thus given by:

$$
\begin{align*}
P^{(1)}(t) & =i \int_{0}^{\infty} E^{\prime}\left(t-t_{1}\right)\left[e^{-i \omega_{01}\left(t-t_{1}\right)}+e^{+i \omega_{01}\left(t-t_{1}\right)}\right] e^{+i \omega_{01} t_{1}} d t_{1}+c . c . \\
& =i \int_{0}^{\infty} E^{\prime}\left(t-t_{1}\right)\left[e^{-i \omega_{01} t} e^{2 i \omega_{01} t_{1}}+e^{+i \omega_{01} t}\right] d t_{1}+c . c . \tag{13}
\end{align*}
$$

Under the rotating wave approximation, the first oscillating term vanishes and we are left with:

$$
\begin{equation*}
P^{(1)}(t)=i \int_{0}^{\infty} E^{\prime}\left(t-t_{1}\right) e^{+i \omega_{01} t} d t_{1}+c . c . \tag{14}
\end{equation*}
$$

The Feynman diagram of $i \operatorname{Tr}\left[\mu\left(t_{1}\right) \mu(0) \rho(-\infty)\right]$ is given by:

2.5:

The left term's Feynman diagram is given by:

Since the left and right terms are mathematically the same, we must maintain the directions of the arrows after cycling the terms.

The right term's Feynman diagram is thus:

2.6:

The fields have the form:

$$
\begin{equation*}
\vec{E}_{j}(\vec{r}, t)=\vec{E}_{j} e^{i\left(\vec{r} \cdot \vec{k}_{j}-\omega t\right)} \tag{15}
\end{equation*}
$$

For an emitted field to have a wavevector $\vec{k}_{1}+\vec{k}_{2}-\vec{k}_{3}$, the input fields must be \vec{E}_{1}, \vec{E}_{2}, and \vec{E}_{3}^{*} (with arrows pointing to the right, right, and left respectively). This corresponds to the Feynman diagram:

2.7:

For an emitted field to have a wavevector $\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}$, the input fields must be \vec{E}_{1}, \vec{E}_{2}, and \vec{E}_{3} (with all arrows pointing to the right). This corresponds to the Feynman diagram:

Since the emission is due to the transition between the virtual state $|3\rangle$ and the ground state $|0\rangle$, the emitted field's frequency must be the sum of all the input field's. We can also deduce this from the input fields \vec{E}_{1}, \vec{E}_{2}, and \vec{E}_{3}, since they all have positive frequencies.

2.8:

For three input beams, some possible phase matching conditions for fifth-order processes are:

1. $\vec{k}=2 \vec{k}_{1}+2 \vec{k}_{2}+\vec{k}_{3}, \vec{k}=2 \vec{k}_{1}+\vec{k}_{2}+2 \vec{k}_{3}, \vec{k}=\vec{k}_{1}+2 \vec{k}_{2}+2 \vec{k}_{3}:$

2. $\vec{k}=2 \vec{k}_{1}-2 \vec{k}_{2}+\vec{k}_{3}$:

3. $\vec{k}=3 \vec{k}_{2}-2 \vec{k}_{3}$:

