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Part I

Classical Nonlinear Optics
(Based on lecture notes by Professor Herbert Winful)





Nonlinear Polarization Response of Materials

In our discussion of nonlinear optics, we will model materials as
linear time-shift invariant (LTI) systems, which means the properties
of the materials do not change under a shift in time t → t− τ. LTI
systems have the convenient property that they are completely char-
acterized by their impulse response h(t). By taking the convolution of
an input signal f (t) with the impulse response h(t), we can find the
system’s response y(t):

y(t) = f (t) ∗ h(t) =
∫ ∞

−∞
h(t− τ) f (τ)dτ (1.1)

For real systems, there are a few restrictions:

1. Causality - Since the response at time t should only depend on the
signal prior to time t, we change the upper bound of the response
integral:

y(t) =
∫ t

−∞
h(t− τ) f (τ)dτ (1.2)

2. Reality - Since f (t) and y(t) are real, h(t) should be real as well.

3. Time-Invariance - Since the system is time-invariant, h(t) should
be time-invariant as well (depends not on t or τ, but only on t− τ).

1.1 Time-Domain Linear Response

Before the discovery of nonlinear optical effects, it was believed that
the polarization of materials responded to applied fields linearly
according to their first-order impulse response1 χ(1)(t). It is called 1 Not to be confused with their fre-

quency susceptibility χ(1)(ω)first-order in anticipation of additional nonlinear orders that we will
discuss later. In its most general form, the first-order time-domain
susceptibility is a second rank tensor:

¯̄χ(1)(t) =

χ
(1)
xx (t) χ

(1)
xy (t) χ

(1)
xz (t)

χ
(1)
yx (t) χ

(1)
yy (t) χ

(1)
yz (t)

χ
(1)
zx (t) χ

(1)
zy (t) χ

(1)
zz (t)

 (1.3)
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Therefore, each component of the polarization will depend on the
convolution of the components of ¯̄χ(1)(t) with all three components
of the applied field:

P(1)
x (t) = ε0

[∫ ∞

−∞

(
χ
(1)
xx (t− τ)Ex(τ) + χ

(1)
xy (t− τ)Ey(τ) + χ

(1)
xz (t− τ)Ez(τ)

)
dτ

]
x̂

P(1)
y (t) = ε0

[∫ ∞

−∞

(
χ
(1)
yx (t− τ)Ex(τ) + χ

(1)
yy (t− τ)Ey(τ) + χ

(1)
yz (t− τ)Ez(τ)

)
dτ

]
ŷ

P(1)
z (t) = ε0

[∫ ∞

−∞

(
χ
(1)
zx (t− τ)Ex(τ) + χ

(1)
zy (t− τ)Ey(τ) + χ

(1)
zz (t− τ)Ez(τ)

)
dτ

]
ẑ

(1.4)

This notation is a bit clunky, so we instead express the polarization in
Einstein summation convention:

P(1)
i (t) = ε0

∫ ∞

−∞
χ
(1)
ij (t− τ)Ej(τ)dτ (1.5)

where any repeated index2 is summed over. It is important that 2 In the context of nonlinear optics, all
letter subscripts (i, j, k, ` . . . ) should
be understood as representing the
Cartesian coordinates x, y, z.

you become fluid in switching back and forth between Einstein
summation convention and the explicit sum form. Practice by going
from 1.5 to 1.4 and back a few times.

1.2 Time-Domain Nonlinear Response

It is now known that the polarization of materials does not respond
linearly at high intensities. Instead, there are nonlinear terms in the
polarization response, which are denoted by P(2)

i (t), P(3)
i (t). . . , and

form the so-called Volterra series:

Pi(t) = ε0

∫ ∞

−∞
χ
(1)
ij (t− τ1)Ej(τ1)dτ1︸ ︷︷ ︸

P(1)
i (t)

+ ε0

∫ ∞

−∞

∫ ∞

−∞
χ
(2)
ijk (t− τ1, t− τ2)Ej(τ1)Ek(τ2)dτ1dτ2︸ ︷︷ ︸

P(2)
i (t)

+ ε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ
(3)
ijk`(t− τ1, t− τ2, t− τ3)Ej(τ1)Ek(τ2)E`(τ3)dτ1dτ2︸ ︷︷ ︸

P(3)
i (t)

+ . . . (1.6)
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In the case in which the material responds instantaneously, the time-
domain susceptibility of each order becomes a delta function:

χ
(1)
ij (t− τ1) = χ

(1)
ij δ(t− τ1)

χ
(2)
ijk (t− τ1, t− τ2) = χ

(2)
ij δ(t− τ1)δ(t− τ2)

χ
(3)
ijk`(t− τ1, t− τ2, t− τ3) = χ

(3)
ijk`δ(t− τ1)δ(t− τ2)δ(t− τ3)

... (1.7)

In this case, the Volterra series simplifies to:

Pi(t) = ε0

[
χ
(1)
ij Ej(t) + χ

(2)
ijk Ej(t)Ek(t) + χ

(3)
ijk`Ej(t)Ek(t)E`(t) + . . .

]
(1.8)

1.3 The Anharmonic Oscillator Model

In the Lorentz model of the atom, the electron and nucleus are
treated as being connected by an effective spring. If this spring had a
spring constant of k = mω2

0 and obeyed Hooke’s law, the equation of
motion for the electron3 in one dimension reads: 3 Assuming no nuclear motion, which is

reasonable since most nuclei are much
more massive than the electron.mẍ = −mω2

0x−mγẋ− eE(t) (1.9)

where E(t) is an applied electric field along the direction of motion
and γ is a damping constant that represents the loss of energy. Just
like in real springs however, Hooke’s law is only an approximation.
There are in fact nonlinear components of the spring restoring force,
which result in amazingly different behavior. For now, we only
include the next order component that depends on x2:

mẍ = −mω2
0x− bx2 −mγẋ− eE(t) (1.10)

One important point is that this second order term that depends on
x2 exists only in non-centrosymmetric4 materials. To see this we find 4 Centrosymmetry means invariance

under coordinate inversion r→ −r.the potential energy associated with the restoring force of the spring:

Uspring(x) =
∫
−mω2

0x− bx2dx = −1
2

mω2
0x2 − 1

3
bx3 (1.11)

Since the potential energy must be invariant under coordinate inver-
sion in centrosymmetric materials (x → −x), we try making such a
transformation:

Uspring(−x) = −1
2

mω2
0x2 +

1
3

bx3 (1.12)

We thus find that the second order restoring force must be zero for
the centrosymmetric condition to hold:

Uspring(x) 6= Uspring(−x) unless b = 0 (1.13)
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In fact, it is not hard to show that all nonlinear components that de-
pend on even powers of x must vanish for centrosymmetric materials.

Assuming that the nonlinear component is very small compared to
the linear component (mbx2 � mω2

0x), we can use perturbation the-
ory to solve this problem. To do so, we first expand the displacement
x(t) as a power series in b (since b is small):

x(t) = x0(t) + bx1(t) + b2x2(t) + b3x3(t) + . . . (1.14)

Plugging this expansion of x(t) into 1.10 (keeping only the first three
terms), we find:

− eE(t)
m
− bx2

0 − b22x0x1 =
(

ẍ0 + γẋ0 + ω2
0x0

)
+ b

(
ẍ1 + γẋ1 + ω2

0x1

)
+ b2

(
ẍ2 + γẋ2 + ω2

0x2

)
(1.15)

where we neglected terms that dependended on b3, b4, and b5, since
they will only contribute when additional terms in the expansion 1.14

are included. By the uniqueness of power series, we can match the
terms on each side according to the power of b in front:

b0 : ẍ0 + γẋ0 + ω2
0x0 = − eE(t)

m
(1.16a)

b1 : ẍ1 + γẋ1 + ω2
0x1 = −x2

0 (1.16b)

b2 : ẍ2 + γẋ2 + ω2
0x2 = −2x0x1 (1.16c)

If we included higher order terms in the expansion 1.14, there would
be more equations for x3(t), x4(t), and so on. The strategy for solving
1.16a, 1.16b, and 1.16c is the following:

1. Solve for the impulse response function of 1.16a. x0(t) is then the
convolution of the impulse response with − eE(t)

m .

2. By inspection, we see that the impulse response of 1.16b is iden-
tical to that of 1.16a. x1(t) is then the convolution of the impulse
response with −x2

0, which we know from step 1.

3. Again find x2(t) by convolving the impulse response with −2x0x1,
which we know from the results of step 1 and 2.

To find the impulse response h(t) of 1.16a, we input a Dirac delta
function for the signal:

ḧ + γḣ + ω2
0h = δ(t) (1.17)

The easiest way to solve for h(t) is to first take the Fourier transform
of both sides5: 5 Recall that derivatives turn into factors

of −iω:

F{ ḟ (t)} = −iωF(ω)

F{ f̈ (t)} = −ω2F(ω)
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−ω2H(ω)− iγωH(ω) + ω2
0 H(ω) = 1

and a little rearranging gives the Fourier transform of h(t):

H(ω) =
1

ω2
0 −ω2 − iγω

(1.18)

A quick look at a Fourier transform table gives the inverse Fourier
transform h(t):

h(t) = F−1{H(ω)} = e−
γ
2 t√

ω2
0 −

( γ
2
)2

sin

(√
ω2

0 −
(γ

2

)2
t

)
u(t) (1.19)

where u(t) is the Heaviside step function. Dropping the integral
limits (which are understood to be −∞ to ∞ unless otherwise noted),
the solution for x0(t) is thus:

x0(t) = h(t) ∗
(
− eE(t)

m

)
=
∫

h(t− τ)

(
− eE(τ)

m

)
dτ (1.20)

We then find x1(t) by convolving the impulse response with −x2
0:

x1(t) = h(t) ∗
[
−
∫

h(t− τ1)

(
− eE(τ1)

m

)
dτ1

∫
h(t− τ2)

(
− eE(τ2)

m

)
dτ2

]
= − e2

m2

∫∫∫
h(t− τ)h(t− τ1)h(t− τ2)E(τ1)E(τ2)dτdτ1dτ2

= − e2

m2

∫∫∫
h(t− τ)h(τ − τ1)h(τ − τ2)E(τ1)E(τ2)dτdτ1dτ2

= − e2

m2

∫∫
Z(t− τ1, t− τ2)E(τ1)E(τ2)dτ1dτ2 (1.21)

where we’ve defined the integral6: 6 We can see that this integral depends
only on the differences t− τ1 and t− τ2
by making the substitution u = t− τ in
the integral:

−
∫

h(u)h(t− u− τ1)h(t− u− τ2)du

Integrating over u will give only a t− τ1
and t− τ2 dependence.

Z(t− τ1, t− τ2) =
∫ ∞

−∞
h(t− τ)h(τ − τ1)h(τ − τ2)dτ (1.22)

By the same process (the details are left as an exercise), we find x2(t):

x2(t) = −2
e3

m3

∫∫∫
Z(2)(t− τ1, t− τ2, t− τ3)E(τ1)E(τ2)E(τ3)dτ1dτ2dτ3

(1.23)

where we’ve defined the additional integral:

Z(2)(t− τ1, t− τ2, t− τ3) = −
∫

Z(t− τ3, t− τ4)h(τ4− τ1)h(τ4− τ2)dτ4

(1.24)
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The total polarization can thus be written as:

P(t) =− Nex(t)

=− Nex0(t)− Nebx1(t)− Neb2x2(t) + . . .

=
Ne2

m

∫
h(t− τ)E(τ)dτ︸ ︷︷ ︸

P(1)(t)

+
Ne3

m2

∫∫
Z(t− τ1, t− τ2)E(τ1)E(τ2)dτ1dτ2︸ ︷︷ ︸

P(2)(t)

+
2Ne4

m2

∫∫∫
Z(2)(t− τ1, t− τ2, t− τ3)E(τ1)E(τ2)E(τ3)dτ1dτ2dτ3︸ ︷︷ ︸

P(3)(t)

+ . . . (1.25)

Comparing to the Volterra series 1.6, we find the time-domain suscep-
tibilities of the first three orders to be:

χ(1)(t− τ1) =
Ne2

mε0
h(t− τ) (1.26)

χ(2)(t− τ1, t− τ2) =
Ne3b
m2ε0

Z(t− τ1, t− τ2) (1.27)

χ(3)(t− τ1, t− τ2, t− τ3) =
2Ne4b2

m2ε0
Z(2)(t− τ1, t− τ2, t− τ3) (1.28)

1.4 Frequency-Domain Nonlinear Response

The time-domain description of the nonlinear polarization response
is useful for certain situations such as when ultra-short pulses are
the applied field. In many cases however, it is more convenient to
describe nonlinear phenomena by a frequency response.

Our goal now is to transform the Volterra series into the frequency
domain via Fourier transforms. We will do this according to the
polarization components identified using the underbraces in 1.6, and
begin by defining the first order frequency domain susceptibility:

χ
(1)
ij (ω) = F{χ(1)

ij (t)} =
∫

χ
(1)
ij (t)eiωtdt (1.29)

Recalling that the Fourier transform of the convolution of two func-
tions is the product of the individual Fourier transforms of each
function, we find the first order polarization:

P(1)
i (ω) = F{P(1)

i (t)}

= ε0F{χ
(1)
ij (t) ∗ Ej(t)}

= ε0F{χ
(1)
ij (t)}F{Ej(t)}

= ε0χ
(1)
ij (ω)Ej(ω) (1.30)
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The frequency form of the second term will involve both a double
Fourier transform and a double convolution, which transforms in
the same way as single Fourier transforms and convolutions. First
defining the second order susceptibility:

χ
(2)
ijk (ω1, ω2) = F{χ

(2)
ijk (t1, t2)} =

∫∫
χ
(2)
ijk (t1, t2)ei(ω1t1+ω2t2)dt1dt2

(1.31)

We now calculate the frequency domain polarization response by
making the substitutions t1 = t− τ1 and t2 = t− τ2 along the way and
a bit of leg work:

P(2)
i (ω) = F{P(2)

i (t)}

= F
{

ε0

∫∫
χ
(2)
ijk (t− τ1, t− τ2)Ej(τ1)Ek(τ2)dτ1dτ2

}
= ε0F

{∫∫
χ
(2)
ijk (t1, t2)Ej(t− t1)Ek(t− t2)dt1dt2

}
= ε0F

{∫∫
χ
(2)
ijk (t1, t2)F−1{eiω1t1 Ej(ω1)}F−1{eiω2t2 Ek(ω2)}dt1dt2

}
=

ε0

(2π)2F
{∫∫

χ
(2)
ijk (t1, t2)

[∫
eiω1t1 Ej(ω1)e−iω1tdω1

∫
eiω2t2 Ek(ω2)e−iω2tdω2

]
dt1dt2

}
=

ε0

(2π)2F
{∫∫ [∫∫

χ
(2)
ijk (t1, t2)ei(ω1t1+ω2t2)dt1dt2

]
Ej(ω1)Ek(ω2)e−i(ω1+ω2)tdω1dω2

}
=

ε0

(2π)2F
{∫∫

χ
(2)
ijk (ω1, ω2)Ej(ω1)Ek(ω2)e−i(ω1+ω2)tdω1dω2

}
=

ε0

(2π)2

∫∫∫
χ
(2)
ijk (ω1, ω2)Ej(ω1)Ek(ω2)e−i(ω1+ω2−ω)tdω1dω2dt

=
ε0

(2π)2

∫∫
χ
(2)
ijk (ω1, ω2)Ej(ω1)Ek(ω2)

[∫
e−i(ω1+ω2−ω)tdt

]
dω1dω2

=
ε0

2π

∫∫
χ
(2)
ijk (ω1, ω2)Ej(ω1)Ek(ω2)δ(ω−ω1 −ω2)dω1dω2

(1.32)

where in the last line, we used the well-known Fourier transform of
unity:∫

e−iωtdt = 2πδ(ω)→
∫

e−i(ω1+ω2−ω)tdt = 2πδ(ω−ω1 −ω2)

(1.33)
The delta function δ(ω − ω1 − ω2) requires that, for a non-zero
polarization response, the polarization frequency must satisfy ω =

ω1 + ω2.
By more tedious algebra (which is left as an exercise), we would

obtain the third order polarization:

P(3)
i (ω) =

ε0

(2π)2

∫∫∫
χ
(3)
ijk`(ω1, ω2, ω3)Ej(ω1)Ek(ω2)E`(ω3)δ(ω−ω1−ω2−ω3)dω1dω2dω3

(1.34)
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where the third order susceptibility is defined as:

χ
(3)
ijk`(ω1, ω2, ω3) = F{χ

(3)
ijk`(t1, t2, t3)}

=
∫∫∫

χ
(3)
ijk`(t1, t2, t3)ei(ω1t1+ω2t2+ω3t3)dt1dt2dt3

(1.35)

1.5 Notation of Maker and Terhune

We have now derived the frequency domain descriptions of the first
(1.30), second (1.32), and third order (1.34) polarizations. Surprisingly
(or not), we find that the nonlinear polarization components only
have frequencies in combinations of the input frequencies (which
can be negative!). To make this condition explicit, we insert the
polarization frequency ω into the susceptibility as an argument:

χ
(2)
ijk (ω1, ω2)→ χ

(2)
ijk (ω; ω1, ω2) (1.36)

χ
(3)
ijk`(ω1, ω2, ω3)→ χ

(3)
ijk`(ω; ω1, ω2, ω3) (1.37)

This is known as the notation of Maker and Terhune, after Paul
Maker and Robert Terhune who proposed it while at Ford Research
Labs in Dearborn, MI. To avoid confusing the reader, the above
notation is equivalent to the following:

χ
(2)
ijk (ω1, ω2)→ χ

(2)
ijk (ω = ω1 + ω2; ω1, ω2)

χ
(3)
ijk`(ω1, ω2, ω3)→χ

(3)
ijk`(ω = ω1 + ω2 + ω3; ω1, ω2, ω3)

in which the allowed frequency components ω = ω1 + ω2 and
ω = ω1 + ω2 + ω3 are indicated explicitly. What this notation provides
is that the first argument separated by the semicolon specifies which
frequency component of the polarization the susceptibility results in.
We will adopt this notation from here on.

1.6 Susceptibility Symmetry Properties

There is an additional step which will simplify future analysis, which
is to determine the symmetry properties of the nonlinear susceptibili-
ties 1.31 and 1.35. There are three main symmetry properties that the
susceptibility obeys:

1. Intrinsic Permutation Symmetry: All materials obey intrinsic
permutation symmetry, in which the susceptibilities of all orders
are invariant under simultaneous permutation of indices and their
associated frequencies, except the first. For the first and second
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order susceptibilities, the symmetry in equation form reads:

χ
(2)
ijk (ω; ω1, ω2) = χ

(2)
ikj (ω; ω2, ω1) (1.38)

χ
(3)
ijk`(ω; ω1, ω2, ω3) = χ

(3)
ikj`(ω; ω2, ω1, ω3) = χ

(3)
ij`k(ω; ω1, ω3, ω2)

(1.39)

2. Full Permutation Symmetry: If a material is lossless at the fre-
quencies involved7 in the interaction, the susceptibilities of all 7 The frequencies "involved" in the

interaction refer to ω, ω1, and ω2 for
second-order interactions and ω, ω1, ω2,
and ω3 for third-order interactions.

orders are invariant under simultaneous permutation of all indices
and their associated frequency, including the first. This is simply
an extension of intrinsic permutation symmetry, so the first and
second order-susceptibilities will have the symmetry properties
given by 1.38 and 1.39 plus the permutations of the first index. For
brevity, we give two examples of full permutation symmetry and
leave the others as an exercise:

χ
(2)
ijk (ω; ω1, ω2) = χ

(2)
kji (ω2; ω1, ω) (1.40)

χ
(3)
ijk`(ω; ω1, ω2, ω3) = χ

(3)
jik`(ω1; ω, ω2, ω3) (1.41)

3. Kleinman Symmetry: If the frequencies involved are far from
material resonances, which is often the case, the susceptibility will
be approximately independent of frequency. This means that the
susceptibility is dispersionless, which allows for permutation of
all indices without permuting the frequencies, known as Kleinman
symmetry. Again, we give two examples of Kleinman symmetry8: 8 See page 39 of Boyd’s book for a full

list of Kleinman symmetries for the
second-order susceptibility.

χ
(2)
ijk (ω; ω1, ω2) = χ

(2)
kji (ω; ω1, ω2) (1.42)

χ
(3)
ijk`(ω; ω1, ω2, ω3) = χ

(3)
ikj`(ω; ω1, ω2, ω3) (1.43)

1.7 Field Propagation in Nonlinear Media

In general, we can write an arbitrary field composed of sinusoidal
components with frequencies ωn in terms of complex exponentials9: 9 For clarity we have suppressed the

dependence of E on the position r.

E(t) = ∑
ωn

|Eωn |cos(ωnt + φn)

= ∑
ωn

|Eωn |
2

(
e−iωnte−iφn + eiωnteiφn

)
= ∑

ωn

1
2

[
(Eωn) e−iωnt + (Eωn)∗ eiωnt

]
(1.44)

where we’ve defined the complex field amplitude:

Eωn = |Eωn |e−iφn (1.45)
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We can find the frequency spectrum of 1.44 via Fourier transform:

E(ω) = F{E(t)}

= ∑
ωn

[
1
2

∫
(Eωn) ei(ω−ωn)tdt +

1
2

∫
(Eωn)∗ ei(ω+ωn)tdt

]
= ∑

ωn

π
[
(Eωn) δ(ω−ωn) + (Eωn)∗ δ(ω + ωn)

]
(1.46)

Similarly, the polarization in a medium induced by an applied field
with discrete frequencies can also be written as:

P(t) = ∑
ωm

1
2

[
(Pωm) e−iωmt + (Pωm)∗ eiωmt

]
(1.47)

P(ω) = ∑
ωm

π
[
(Pωm) δ(ω−ωm) + (Pωm)∗ δ(ω + ωm)

]
(1.48)

Recalling elementary electromagnetism, Maxwell’s equations give the
electric field wave equation:

−µ0
∂2P
∂t2 = ∇×∇× E +

1
c2

∂2E
∂t2

= ∇(∇ · E)−∇2E +
1
c2

∂2E
∂t2

= −∇2E +
1
c2

∂2E
∂t2 (1.49)

where we’ve assumed that the field is a plane wave (∇ · E = 0).
Plugging in the time-domain descriptions of the electric field and
polarization ?? and ??, we find:

∑
ωm

µ0ω2
m

2

[
(Pωm) e−iωmt + (Pωm)∗ eiωmt

]
=−∑

ωn

1
2

[
∇2 (Eωn) e−iωnt +∇2 (Eωn)∗ eiωnt

]
−∑

ωn

ω2
n

2c2

[
(Eωn) e−iωnt + (Eωn)∗ eiωnt

]
Some additional manipulations:

Re

{
∑
ωm

µ0ω2
mPωm e−iωmt

}
= −Re

{
∑
ωn

[
∇2Eωn +

ω2
n

c2 Eωn

]
e−iωnt

}

→∑
ωm

µ0ω2
mPωm = −∑

ωn

[
∇2Eωn +

ω2
n

c2 Eωn

]
e−i(ωn−ωm)t

For stationary solutions independent of time t, we require ωn = ωm.
Equating each term in the power series:

−µ0ω2
nPωn = ∇2Eωn +

ω2
n

c2 Eωn (1.50)



17

It is convenient to separate the polarization Pωn into its linear and
nonlinear components (Pωn L and Pωn NL respectively):

Pωn = Pωn L + Pωn NL

= ε0 ¯̄χ(1)(ωn)Eωn + Pωn NL (1.51)

where ¯̄χ(1)(ωn) is the first-order frequency susceptibility found
by taking the Fourier transform of 1.3. The susceptibility tensor’s
components will depend on our choice of coordinate system, and for
a special choice, known as the principal coordinate system, it will be
diagonal:

¯̄χ(1)(ωn) =

χ
(1)
1 (ωn) 0 0

0 χ
(1)
2 (ωn) 0

0 0 χ
(1)
3 (ωn)

 (1.52)

The first-order susceptibility is also related to the index of refraction
tensor10 and the relative permittivity tensor by: 10 In the principal coordinate system,

the index of refraction tensor will also
be diagonal. The diagonal components
are called principal refractive indices.

¯̄ε(ωn) = ¯̄n2(ωn) = 1 + ¯̄χ(1)(ωn) (1.53)

Plugging the polarization ?? into the wave equation ??, we find:

−µ0ω2
nPωn NL = ∇2Eωn +

ω2
n

c2 [1 + ¯̄χ(ωn)] Eωn

= ∇2Eωn +
ω2

n
c2

¯̄n2(ωn)Eωn (1.54)

For now we assume that the medium is isotropic (we will examine
the anisotropic case later). We thus drop the vector dependence of the
electric field and polarization to find:

∇2Eωn +
ω2

nn2(ωn)

c2 Eωn = −µ0ω2
nPωn NL (1.55)

Assuming that the plane wave field propagates in the ẑ direction, we
rewrite the field amplitude with the propagation factor pulled out:

Eωn = Aωn(z)eikωn z where kωn =
n(ωn)ωn

c
(1.56)

Plugging this new amplitude form into the wave equation yields11: 11 Notice that ω2
nn2(ωn)

c2 = (kωn )2.

−µ0ω2
nPωn NL =

(
d2 Aωn

dz2 + 2ikωn
dAωn

dz
− (kωn)2 Aωn

)
eikωn z +

ω2
nn2(ωn)

c2 Aωn eikωn z

=

(
d2 Aωn

dz2 + 2ikωn
dAωn

dz

)
eikωn z

Since in real scenarios the amplitude of each frequency component
will be slowly varying, we make the slowly varying envelope ap-
proximation (SVEA):

d2 Aωn

dz2 + 2ikωn
dAωn

dz
≈ 2ikωn

dAωn

dz
(1.57)
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The wave equation in the SVEA finally becomes:

2ikωn
dAωn

dz
= −µ0ω2

nPωn NLe−ikωn z (1.58)

We will use this equation as the starting point for analyzing many
different nonlinear optics phenomena.



Second-Order Nonlinear Polarization

2.1 Second-Order Susceptibility

The first step to analyzing second-order polarization phenomena is
to derive the exact form of the second-order susceptibility. Recall the
form of χ(2)(t− τ1, t− τ2) given by 1.27 and 1.22:

χ(2)(t− τ1, t− τ2) =
Ne3b
m2ε0

Z(t− τ1, t− τ2)

=
Ne3b
m2ε0

∫
h(t− τ)h(τ − τ1)h(τ − τ2)dτ (2.59)

We can write the impulse response functions above as integrals:

h(t− τ) =
1

2π

∫
H(ω)e−iω(t−τ)dω

h(τ − τ1) =
1

2π

∫
H(ω1)e−iω1(τ−τ1)dω1

h(τ − τ2) =
1

2π

∫
H(ω2)e−iω2(τ−τ2)dω2

Plugging these explicit integral forms into the equation for the time-
domain susceptibility:

χ(2)(t− τ1, t− τ2) =
Ne3b

m2ε0(2π)3

∫∫∫∫
H(ω)H(ω1)H(ω2)e−iω(t−τ)e−iω1(τ−τ1)e−iω2(τ−τ2)dωdω1dω2dτ

=
Ne3b

m2ε0(2π)3

∫∫∫
H(ω)H(ω1)H(ω2)

[∫
e−i(ω1+ω2−ω)τdτ

]
ei(ω1τ1+ω2τ2)e−iωtdωdω1dω2

=
Ne3b

m2ε0(2π)2

∫∫∫
H(ω)H(ω1)H(ω2)δ(ω1 + ω2 −ω)ei(ω1τ1+ω2τ2)e−iωtdωdω1dω2

=
Ne3b

m2ε0(2π)2

∫∫
H(ω1)H(ω2)

[∫
H(ω)δ(ω1 + ω2 −ω)e−iωtdω

]
ei(ω1τ1+ω2τ2)dω1dω2

=
Ne3b

m2ε0(2π)2

∫∫
H(ω1 + ω2)H(ω1)H(ω2)e−i(ω1+ω2)tei(ω1τ1+ω2τ2)dω1dω2

=
Ne3b

m2ε0(2π)2

∫∫
H(ω1 + ω2)H(ω1)H(ω2)e−i[ω1(t−τ1)+ω2(t−τ2)]dω1dω2

=
Ne3b

m2ε0(2π)2F
−1 {H(ω1 + ω2)H(ω1)H(ω2)}

(2.60)
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We have now derived a very nice result by recognizing in the last
line that the double integral simply represents an inverse Fourier
transform. It is now trivial to find the frequency susceptibility:

χ(2)(ω; ω1, ω2) = F{χ(2)(t− τ1, t− τ2)}

=
Ne3b
m2ε0

F
{
F−1 {H(ω1 + ω2)H(ω1)H(ω2)}

}
=

Ne3b
m2ε0

H(ω1 + ω2)H(ω1)H(ω2) (2.61)

Recalling the Lorentz model frequency response found in 1.18:

H(ω) =
1

ω2
0 −ω2 − iγω

We plug into 2.61 to find:

χ(2)(ω; ω1, ω2) =
Ne3b
m2ε0

H(ω1 + ω2)H(ω1)H(ω2)

=
Ne3b
m2ε0

1
(ω2

0 −ω2
1 − iγω1)(ω

2
0 −ω2

2 − iγω2)[ω
2
0 − (ω1 + ω2)2 − iγ(ω1 + ω2)]

(2.62)

We thus see that the second order susceptibility becomes large as
ω1 → ω0, ω2 → ω0, or ω1 + ω2 → ω0.

2.2 Numerical Estimate of χ(2)

It is often the case that the first resonance of a material ω0 is much
higher than the input frequencies (ω0 � ω1, ω2). We can thus
approximate 2.77 as independent of input frequencies ω1 and ω2 by:

χ(2) ≈ Ne3b
m2ε0ω6

0

We can then estimate the value of the nonlinear coefficient b, by
assuming that the second-order restoring force becomes comparable
to the linear restoring force when the electron displacement becomes
greater than or equal to the material lattice constant d:

mω2
0d ≈ mbd2 → b ≈

ω2
0

d
(2.63)

Also plugging in N ≈ 1
d3 , the second order susceptibility is approxi-

mately:

χ(2) ≈ e3

m2ε0ω4
0d4

(2.64)

Plugging in some standard values ω0 = 1016 rad
s and d = 3Å:

χ(2) ≈ 6.9 ∗ 10−12 m
V
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which agrees pretty well with typical measured values for many
materials.

2.3 Miller’s Rule

In 1964
12, Robert Miller at Bell Labs noticed a relation between the 12 Appl. Phys. Lett. 5, 17 (1964).

first and second-order susceptibilities. Recalling the first and second
order susceptibilities:

χ(1)(ω) =
Ne2

mε0

1
ω2

0 −ω2 − iγω

χ(2)(ω; ω1, ω2) =
Ne3b
m2ε0

1
(ω2

0 −ω2
1 − iγω1)(ω

2
0 −ω2

2 − iγω2)[ω
2
0 − (ω1 + ω2)2 − iγ(ω1 + ω2)]

Notice that we can write χ(2)(ω; ω1, ω2) in terms of χ(1)(ω):

χ(2)(ω; ω1, ω2) =
Ne3b
m2ε0

(mε0

Ne2

)3
χ(1)(ω1)χ

(1)(ω2)χ
(1)(ω1 + ω2)

(2.65)

We can thus rearrange to find a constant quantity:

mε2
0b

N2e3 =
χ(2)(ω; ω1, ω2)

χ(1)(ω1)χ(1)(ω2)χ(1)(ω1 + ω2)
= constant (2.66)

Since we have found a constant ratio between χ(1) and χ(2), a larger
χ(1) would, in general, mean a larger χ(2). This relationship has
served as a useful guide for identifying materials with larger second-
order nonlinearities.

2.4 General Second-Order Polarization

We now consider a material with an applied field consisting of two
monochromatic components ω = ωa and ω = ωb. Following the
complex exponential form of ??, the frequency spectrum is thus:

E(ω) = π
[
Eωa δ(ω−ωa) + (Eωa)∗ δ(ω + ωa) + Eωb δ(ω−ωb) + (Eωb)∗ δ(ω + ωb)

]
(2.67)

Similarly, the polarization spectrum can also be written as:

P(ω) = π

[
∑
ωn

Pωn δ(ω−ωn) + (Pωn)∗ δ(ω + ωn)

]
(2.68)

where the amplitudes of the positive and negative frequency compo-
nents for the field and polarization are complex conjugates:

E−ω = (Eω)∗ and P−ω = (Pω)∗ (2.69)
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which means that only one of either the positive or negative fre-
quency amplitude is needed to know the other. Plugging 2.68 into
1.32, we find P(2)

i (ω) due to a dichromatic field:

P(2)
i (ω) =

ε0π

2

∫∫
χ
(2)
ijk (ω; ω1, ω2)

[
Eωa

j δ(ω1 −ωa) +
(

Eωa
j

)∗
δ(ω1 + ωa) + Eωb

j δ(ω1 −ωb) +
(

Eωb
j

)∗
δ(ω1 + ωb)

]
[

Eωa
k δ(ω2 −ωa) +

(
Eωa

k
)∗

δ(ω2 + ωa) + Eωb
k δ(ω2 −ωb) +

(
Eωb

k
)∗

δ(ω2 + ωb)
]

δ(ω−ω1 −ω2)dω1dω2

=
ε0π

2

χ
(2)
ijk (2ωa; ωa, ωa)Eωa

j Eωa
k δ(ω− 2ωa) + χ

(2)
ijk (−2ωa;−ωa,−ωa)

(
Eωa

j Eωa
k

)∗
δ(ω + 2ωa)︸ ︷︷ ︸

Second Harmonic Generation (ω = 2ωa)

+ χ
(2)
ijk (2ωb; ωb, ωb)Eωb

j Eωb
k δ(ω− 2ωb) + χ

(2)
ijk (−2ωb;−ωb,−ωb)

(
Eωb

j Eωb
k

)∗
δ(ω + 2ωb)︸ ︷︷ ︸

Second Harmonic Generation (ω = 2ωb)

+

︷ ︸︸ ︷
χ
(2)
ijk (ωa + ωb; ωa, ωb)Eωa

j Eωb
k δ(ω−ωa −ωb) + χ

(2)
ijk (−ωa −ωb;−ωa,−ωb)

(
Eωa

j Eωb
k

)∗
δ(ω + ωa + ωb)

+ χ
(2)
ijk (ωb + ωa; ωb, ωa)Eωb

j Eωa
k δ(ω−ωb −ωa) + χ

(2)
ijk (−ωb −ωa;−ωb,−ωa)

(
Eωb

j Eωa
k

)∗
δ(ω + ωb + ωa)︸ ︷︷ ︸

Sum Frequency Generation (ω = ωa + ωb)

+

︷ ︸︸ ︷
χ
(2)
ijk (ωa −ωb; ωa,−ωb)Eωa

j
(
Eωb

k
)∗

δ(ω−ωa + ωb) + χ
(2)
ijk (ωb −ωa;−ωa, ωb)

(
Eωa

j

)∗
Eωb

k δ(ω + ωa −ωb)

+ χ
(2)
ijk (ωa −ωb;−ωb, ωa)

(
Eωb

j

)∗
Eωa

k δ(ω + ωb −ωa) + χ
(2)
ijk (ωb −ωa; ωb,−ωa)Eωb

j
(
Eωa

k
)∗

δ(ω−ωb + ωa)︸ ︷︷ ︸
Difference Frequency Generation (ω = |ωa −ωb |)

+

︷ ︸︸ ︷
χ
(2)
ijk (0; ωa,−ωa)Eωa

j
(
Eωa

k
)∗

δ(ω) + χ
(2)
ijk (0;−ωa, ωa)

(
Eωa

j

)∗
Eωa

k δ(ω)

+ χ
(2)
ijk (0; ωb,−ωb)Eωb

j
(
Eωb

k
)∗

δ(ω) + χ
(2)
ijk (0;−ωb, ωb)

(
Eωb

j

)∗
Eωb

k δ(ω)︸ ︷︷ ︸
Optical Rectification (ω = 0)


(2.70)

This form for the polarization that we’ve found matches quite nicely
with the form given by 3.94. By inspection we find the respective
polarization amplitudes for each phenomena:

• Second Harmonic Generation (ω = 2ωa) and (ω = 2ωb):

P2ωa
i =

ε0

2
χ
(2)
ijk (2ωa; ωa, ωa)Eωa

j Eωa
k (2.71)

P2ωb
i =

ε0

2
χ
(2)
ijk (2ωb; ωb, ωb)Eωb

j Eωb
k (2.72)
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• Sum Frequency Generation (ω = ωa + ωb):

Pωa+ωb
i =

ε0

2

[
χ
(2)
ijk (ωa + ωb; ωa, ωb)Eωa

j Eωb
k + χ

(2)
ijk (ωb + ωa; ωb, ωa)Eωb

j Eωa
k

]
=

ε0

2

[
χ
(2)
ijk (ωa + ωb; ωa, ωb)Eωa

j Eωb
k + χ

(2)
ikj (ωb + ωa; ωa, ωb)Eωa

k Eωb
j

]
= 2

ε0

2
χ
(2)
ijk (ωa + ωb; ωa, ωb)Eωa

j Eωb
k (2.73)

where in the second line we invoked intrinsic permutation sym-
metry to swap the indices. The second and first terms are thus
equal13: 13 Since the letters used for the indices

are dummy variables, we can swap j
and k in the second term freely.• Difference Frequency Generation (ω = |ωa −ωb|):

Pωa−ωb
i =

ε0

2

[
χ
(2)
ijk (ωa −ωb; ωa,−ωb)Eωa

j
(
Eωb

k
)∗

+ χ
(2)
ijk (ωa −ωb;−ωb, ωa)

(
Eωb

j

)∗
Eωa

k

]
=

ε0

2

[
χ
(2)
ijk (ωa −ωb; ωa,−ωb)Eωa

j
(
Eωb

k
)∗

+ χ
(2)
ikj (ωa −ωb; ωa,−ωb)Eωa

j
(
Eωb

k
)∗]

= 2
ε0

2
χ
(2)
ijk (ωa −ωb; ωa,−ωb)Eωa

j
(
Eωb

k
)∗ (2.74)

• Optical Rectification (ω = 0):

Pωa−ωa
i =

ε0

2

[
χ
(2)
ijk (0; ωa,−ωa)Eωa

j
(
Eωa

k
)∗

+ χ
(2)
ijk (0;−ωa, ωa)

(
Eωa

j

)∗
Eωa

k

]
=

ε0

2

[
χ
(2)
ijk (0; ωa,−ωa)Eωa

j
(
Eωa

k
)∗

+ χ
(2)
ikj (0; ωa,−ωa)Eωa

j
(
Eωa

k
)∗]

= 2
ε0

2
χ
(2)
ijk (0; ωa,−ωa)Eωa

j
(
Eωa

k
)∗ (2.75)

Pωb−ωb
i = 2

ε0

2
χ
(2)
ijk (0; ωb,−ωb)Eωb

j
(
Eωb

k
)∗ (2.76)

Notice that there is a factor of 2 for all polarization amplitudes
except for second harmonic generation. We can thus write a general
expression for the second-order polarization amplitudes as:

Pω1+ω2
i = D

ε0

2
χ
(2)
ijk (ω1, ω2)Eω1

j Eω2
k (2.77)

where D is called the degeneracy factor, with the values14: 14 Note: ωa 6= −ωa and ωb 6= −ωb!

D =

1 if ω1 = ω2

2 if ω1 6= ω2
(2.78)

2.5 The d-Coefficients and Effective Susceptibility

For historical reasons, measured values of the second-order suscepti-
bility are not given in the literature by χ(2), but instead are given in
terms of a so-called d-coefficient:

dijk(ω; ω1, ω2) =
χ
(2)
ijk (ω; ω1, ω2)

2
(2.79)
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From here on, all second-order analysis will be performed in terms of
the d-coefficients rather than the susceptibility, which differ only by a
factor of 2.

We will find in the next chapter that in real nonlinear crystals,
only a specific polarization component Pω1+ω2

pm generated by two
specific components of the fundamental beams Eω1

1,pm and Eω2
2,pm will

grow constructively as they propagate. The subscript pm stands
for “phase-matched” (we will discuss this in the next chapter), and
we also include an extra 1 and 2 to distinguish between different
phase-matched components in the SHG case ω1 = ω2. It is there-
fore convenient to define an effective susceptibility dω1+ω2

e f f , which

directly relates the amplitudes of Pω1+ω2
pm , Eω1

1,pm, and Eω2
2,pm:

Pω1+ω2
pm = ε0dω1+ω2

e f f Eω1
1,pmEω2

2,pm (2.80)

This is probably very confusing, so we examine this in an example.

Example (de f f of SHG): Suppose we have a SHG process, in which
we find that the two phase-matched components of the fundamental
are the components pointing in the direction of the two unit vectors:

û1 =


1√
2

− 1√
2

0

 û2 =

−
1√
2

− 1√
2

0

 (2.81)

and the phase-matched component of the polarization points in the
direction of the unit vector:

û3 =

0
0
1

 (2.82)

Explicitly, the two phase-matched components of Eω are:

Eω
pm = (Eω · û1)û1 = Eω

pm


1√
2

− 1√
2

0

 Eω
pm = (Eω · û2)û2 = Eω

pm

−
1√
2

− 1√
2

0


(2.83)

We now plug these two components into 2.77 to find the net SHG
polarization generated:

P2ω
i =

ε0

2
χ
(2)
ijk (ω, ω)(Eω

1 )j(Eω
2 )k

=
ε0

2

[
χ
(2)
ixx

Eω
1√
2

(
−

Eω
2√
2

)
+ χ

(2)
ixy

Eω
1√
2

(
−

Eω
2√
2

)
+ χ

(2)
iyx

(
−

Eω
1√
2

)
Eω

2√
2
+ χ

(2)
iyy

(
−

Eω
1√
2

)(
−

Eω
2√
2

)]
= − ε0

4

[
χ
(2)
ixx + χ

(2)
ixy + χ

(2)
iyx + χ

(2)
iyy

]
Eω

1 Eω
2 (2.84)
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The only component of the polarization that grows points in the
direction of û3, which is given by:

P2ω
pm = (P2ω

pm · û3)û3 (2.85)

The phase-matched polarization amplitude is thus:

P2ω
pm = P2ω

pm · û3

= P2ω
z

= − ε0

4

[
χ
(2)
zxx + χ

(2)
zxy + χ

(2)
zyx + χ

(2)
zyy

]
Eω

1 Eω
2 (2.86)

Comparing to 2.80, we find the effective susceptibility:

d2ω
e f f = −

1
4

[
χ
(2)
zxx + χ

(2)
zxy + χ

(2)
zyx + χ

(2)
zyy

]
(2.87)

This result can be simplified further by taking into account intrin-
sic/overall permutation and/or Kleinman symmetry.

In the next chapter, we will find out how the phase-matching compo-
nents are determined by examining SHG in detail.





Second Harmonic Generation (SHG)

3.1 The d-Matrix

As derived earlier, the SHG polarization amplitude is given by:

P2ω
i =

ε0

2
χ
(2)
ijk (2ω; ω, ω)Eω

j Eω
k

= ε0dijk(2ω, ω, ω)Eω
j Eω

k (3.88)

For SHG specifically, the fact that both of the input frequencies are
identical allows us to make a simplification. By intrinsic permutation
symmetry we can swap the j and k indices of the d-coefficient, but
swapping the corresponding frequencies has no effect since they’re
identical. We thus find that pairs of j and k indices result in identical
d-coefficients, which suggests that we represent each pair (j, k) by a
third coefficient `:

(j, k) (x,x) (y,y) (z,z) (y,z),(z,y) (x,z),(z,x) (x,y),(y,x)
` 1 2 3 4 5 6

We have now reduced the 27 dijk coefficients to 18 di` coefficients,
which we represent as a so-called d-matrix15 (with the frequency 15 Note: The d-matrix is NOT a tensor,

since it does not transform like a vector.arguments suppressed for clarity):

d =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (3.89)

where the first index i is replaced by (x, y, z) → (1, 2, 3) to match
convention. Each polarization component can now be expressed
nicely in matrix form:

P2ω
x

P2ω
y

P2ω
z

 =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36





(Eω
x )

2(
Eω

y

)2

(Eω
z )

2

2Eω
y Eω

z

2Eω
x Eω

z
2Eω

x Eω
y


(3.90)
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3.2 Symmetry Properties of the d-Coefficients

If the material has a certain symmetry represented by a 3x3 trans-
formation tensor (matrix) aij, the d-coefficients will obey the same
symmetry according to:

d′ijk = ai`ajmaknd`mn (3.91)

Example (Monoclinic 2 Class): Crystals that are in the monoclinic 2

class obey the two-fold rotation operation around a certain axis (in
this case y) represented by:

a =

−1 0 0
0 1 0
0 0 −1

 or aij =

−δij if i = x, z

+δij if i = y
(3.92)

Since the transformation matrix a is diagonal, the condition 3.94

reduces to:

d′ijk = aiiajjakkdijk (3.93)

Since the transformed tensor d′ijk should be invariant under the
transformation a, all of the elements dijk for which aiiajjakk = −1
must equal 0. According to 3.95, all indices (ijk) in which the index y
appears 0 or 2 times.

Example (Orthorhombic 222): Crystals that are in the orthorhombic
222 class obey the two-fold rotation operation around all three axes
x, y, and z. The operator for a two-fold rotation around the y axis
is given by 3.95 in the first example. The operators for a two-fold
rotation about the x and z axes are similarly:

a =

1 0 0
0 −1 0
0 0 −1

 or aij =

−δij if i = y, z

+δij if i = x
(3.94)

a =

−1 0 0
0 −1 0
0 0 1

 or aij =

−δij if i = x, y

+δij if i = z
(3.95)

We thus find that all elements dijk with indices (ijk) in which the
index x, y, and z appear 0 or two times must equal 0. The only non-
zero elements are thus d123, d213, d231, d312, and d321.
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If the medium is dispersionless, Kleinman symmetry holds and the
number of independent components is reduced even further:

dxxy︸︷︷︸
d16

= dxyx︸︷︷︸
d16

= dyxx︸︷︷︸
d21

→ d16 = d21

dxyy︸︷︷︸
d15

= dyxy︸︷︷︸
d26

= dyyx︸︷︷︸
d26

→ d12 = d26

dxzz︸︷︷︸
d13

= dzxz︸︷︷︸
d35

= dzzx︸︷︷︸
d35

→ d13 = d35

dxxz︸︷︷︸
d15

= dxzx︸︷︷︸
d15

= dzxx︸︷︷︸
d31

→ d15 = d31

dyyz︸︷︷︸
d24

= dyzy︸︷︷︸
d24

= dzyy︸︷︷︸
d32

→ d24 = d32

dyzz︸︷︷︸
d23

= dzyz︸︷︷︸
d34

= dzzy︸︷︷︸
d34

→ d23 = d34

dxyz︸︷︷︸
d14

= dyxz︸︷︷︸
d25

= dzxy︸︷︷︸
d36

= dzyx︸︷︷︸
d36

= dxzy︸︷︷︸
d14

= dyzx︸︷︷︸
d25

→ d14 = d25 = d36

which reduces the number of independent components of the d-
matrix from 18 to 10:

d =

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14

 (3.96)

3.3 SHG Wave Equation

Recall the SHG polarization amplitude from before:

P2ω
i = ε0dijk(2ω, ω, ω)Eω

j Eω
k

Assuming that there is a second harmonic generated at frequency 2ω,
this light can then mix with the fundamental light at frequency ω to
generate a polarization at the fundamental frequency:

Pω
i = 2ε0dijk(ω, 2ω,−ω)E2ω

j (Eω
k )
∗ (3.97)

For convenience, we use the effective susceptibility notation devel-
oped in the last chapter, and work simply in terms of the amplitudes
of the phase-matched fundamental and polarization components:

P2ω = ε0d2ω
e f f EωEω Pω = ε0dω

e f f E2ω (Eω)∗ (3.98)

If the nonlinear medium is lossless, overall permutation symmetry
applies. This means d2ω

e f f = 1
2 dω

e f f = de f f and we will make this
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assumption here:

P2ω = ε0de f f EωEω Pω = 2ε0de f f E2ω (Eω)∗ (3.99)

As before, we also assume that the fields propagate as plane waves in
the ẑ direction, in which case we can pull out the propagation factor:

E2ω = A2ωeik2ωz Eω = Aωeikωz (3.100)

For reference, the SVEA wave equation derived in the first chapter
(1.58) is given by:

2ikωn
dAωn

dz
= −µ0ω2

nPωn NLe−ikωn z

Plugging in the fundamental and second harmonic amplitudes and
polarizations, we find:

dA2ω

dz
= i

µ0(2ω)2

2k2ω
ε0de f f

(
Aωeikωz

)2
e−ik2ωz (3.101)

dAω

dz
= i

µ0ω2

2kω
2ε0de f f A2ωeik2ωz

(
Aωeikωz

)∗
e−ikωz (3.102)

We can now simplify the above by defining the wave impedance in
terms of η0, the impedance of free space:

ηωn =
η0

n(ωn)
where η0 =

√
µ0

ε0
(3.103)

The wave equations for A2ω and Aω can thus be written as:

dA2ω

dz
= iωη2ωε0de f f (Aω)2 ei∆kz (3.104)

dAω

dz
= iωηωε0de f f A2ω (Aω)∗ e−i∆kz (3.105)

where we’ve defined the wave-vector mismatch between the funda-
mental and second harmonic:

∆k = 2kω − k2ω (3.106)

This wave-vector mismatch defines the phase-matching condition of
SHG. For zero mismatch (∆k = 0) there is so-called "perfect phase-
matching", which results in the greatest generated second harmonic
field. For finite mismatch (∆k 6= 0), the greater the mismatch the less
second harmonic is generated.

3.4 SHG In The Non-Depleted Pump Approximation

In real situations, the fundamental (referred to as the "pump") inten-
sity is often sufficient for the change in pump amplitude (from either
material loss or conversion to SHG light) to be neglected:

dAω

dz
≈ 0 (non-depleted pump approximation) (3.107)
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The pump amplitude is thus always equal to its initial value Aω(z) =
Aω(0), which simplifies the second harmonic amplitude equation:

dA2ω

dz
= iωη2ωε0de f f [Aω(0)]2ei∆kz

= Cei∆kz where C = iωη2ωε0de f f [Aω(0)]2 (3.108)

The second harmonic amplitude at a distance z is thus given by:

A2ω(z) =
∫ z

0
Cei∆kz′dz′

= C
ei∆kz − 1

i∆k

= 2Cei ∆k
2 z

(
ei ∆k

2 z − e−i ∆k
2 z

2i∆k

)

= zCei ∆k
2 z

 sin
(

∆k
2 z
)

∆k
2 z


= zCei ∆k

2 zsinc
(

∆k
2

z
)

(3.109)

The intensity is then proportional to the amplitude squared:

I2ω(z) =
|A2ω(z)|2

2η2ω
= z2 |C|2

2η2ω
sinc2

(
∆k
2

z
)

(3.110)

Figure 3.1: Second harmonic intensity
as a function of distance for different
wave-vector mismatches.

We see that for ∆k 6= 0, the second harmonic intensity will oscillate
with distance, with the first maximum occuring at a distance Lc

called the coherence length:

Lc =
π

∆k
(3.111)

Plotted in figure 3.1, as the wavevector mismatch decreases, the
amplitude of the oscillations grows and approaches quadratic growth
as ∆k→ 0. Of course, indefinite quadratic growth is unphysical since
it violates conservation of energy, and is a result of the non-depleted
pump approximation. We should therefore define the limits under
which we can make the approximation. Before we do, let us define
the SHG conversion efficiency:

ηSHG(z) =
P2ω(z)
Pω(0)

≈ I2ω(z)
Iω(0)

=
2ηωz2

(
ωη2ωε0de f f [Aω(0)]2

)2

2η2ω [Aω(0)]2
sinc2

(
∆k
2

z
)

= 2η2ω
(

ηωzωε0de f f

)2
Iω(0)sinc2

(
∆k
2

z
)

(3.112)
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where we’ve assumed that the area of the fundamental and second
harmonic beams are approximately equal.

A rough guideline is that the non-depleted pump approximation is
valid for conversion efficiencies less than or equal to 25%. For higher
conversion efficiencies, pump depletion must be accounted for, which
will be treated in the next section.

3.5 SHG With Pump Depletion

In most cases we can apply the non-depleted pump approximation
and use the results derived in the previous section to find the second
harmonic intensity propagating through a nonlinear crystal. When
the conversion efficiency is very high however, we must take into
account the energy in the pump field decreasing with distance. The
most obvious case of such high efficiency is in the case of perfect
phase-matching (∆k = 0), which we examine first.

Pump-Depleted SHG (∆k = 0)

For perfect phase-matching, we find the wave equations:

dA2ω

dz
= iωη2ωε0de f f (Aω)2 (3.113)

dAω

dz
= iωηωε0de f f A2ω (Aω)∗ (3.114)

We can write out the phase-matching condition:

0 = ∆k

= 2kω − k2ω

= 2
ωn(ω)

c
− 2ωn(2ω)

c

We can thus see that for perfect phase-matching, the index at frequen-
cies ω and 2ω must be identical:

n(ω) = n(2ω) for ∆k = 0 (3.115)

We shall see how to achieve such a situation later. This also makes
the wave impedances for the fundamental and second harmonic
identical (ηω = η2ω), which gives:

dA2ω

dz
= iωη2ωε0de f f (Aω)2 (3.116)

dAω

dz
= iωηωε0de f f A2ω (Aω)∗ (3.117)
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Perturbation Theory

We now consider the general problem, in which the Hamiltonian
is too complicated to solve exactly. Although an analytical solution
would be nice, we can solve these problems approximately through a
technique known as perturbation theory. In most practical problems,
we can separate the Hamiltonian into two parts, Ĥ0 and Ĥ1(t):

Ĥ = Ĥ0 + Ĥ1(t) (1.118)

in which Ĥ0 is a time-independent Hamiltonian with corresponding
eigenstates and eigenenergies |n〉 and En:

Ĥ0 |n〉 = En |n〉 (1.119)

and Ĥ1(t) is a time-dependent adjustment to the total Hamiltonian,
called a perturbation, that must be small in magnitude compared to
Ĥ0 for perturbation theory to be practically applied16. 16 Specifically, the off-diagonal matrix

elements of Ĥ1(t) must be very small
compared to the corresponding energy
differences: |

〈
n
∣∣ Ĥ1(t)

∣∣m
〉
| � |En −

Em|

To apply perturbation theory, we write the perturbation in a
slightly different form:

Ĥ1(t) = λĤ′1(t) (1.120)

where λ is a parameter that we’ll use only for the purpose of book-
keeping. In the end, we set λ = 1 to make Ĥ1(t) = Ĥ′1(t) and our
solution exact. The time-dependent Schrodinger equation is given by:

ih̄
d
dt
|ψ(t)〉 =

(
Ĥ0 + λĤ′1(t)

)
|ψ(t)〉 (1.121)

We now project onto an arbitrary eigenstate |k〉 by adding 〈k| to the
left of each term on both sides 17: 17 In the second line, we use the closure

relation: ∑
n
|n〉 〈n| = 1

ih̄
d
dt
〈k |ψ(t)〉 =

〈
k
∣∣ Ĥ0

∣∣ψ(t)
〉
+ λ

〈
k
∣∣ Ĥ′1

∣∣ψ(t)
〉

= Ek 〈k |ψ(t)〉+ λ ∑
n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉
〈n |ψ(t)〉 (1.122)

Recall that the eigenstates |n〉 form an orthonormal basis, so we can
express any arbitrary function as a superposition of all |n〉:

|ψ(t)〉 = ∑
n

γn(t)e−i En
h̄ t |n〉 (1.123)
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Notice that the coefficients γn(t) are time-dependent to allow for ψ(t)
to have a time-dependence. Plugging 1.123 into 1.122, we obtain18: 18 Where we used the orthonormality of

the eigenstates: 〈m | n〉 = δmn[
Ekγk(t) + ih̄

d
dt

γk(t)
]

e−i Ek
h̄ t = Ekγk(t)e−i Ek

h̄ t + λ ∑
n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

γn(t)e−i En
h̄ t

(1.124)

A slight rearrangement gives:

ih̄
d
dt

γk(t) = λ ∑
n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγn(t) (1.125)

At this point, it seems like we’ve done nothing but made the problem
more complicated. However, if we expand γk(t) as a power series in
λ:

γk(t) = γ
(0)
k (t) + λγ

(1)
k (t) + λ2γ

(2)
k (t) + . . . (1.126)

We can plug 1.126 into 1.125 to find:

0 =

[
ih̄

d
dt

γ
(0)
k (t)− 0

]
+ λ

[
ih̄

d
dt

γ
(1)
k (t)−∑

n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγ

(0)
n (t)

]

+ λ2

[
ih̄

d
dt

γ
(2)
k (t)−∑

n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγ

(1)
n (t)

]
... (1.127)

By the uniqueness of power series, each term in the brackets must
vanish individually. We thus obtain an infinite set of equations, each
of which we refer to by the power of λ they correspond to:

Zeroth Order: ih̄
d
dt

γ
(0)
k (t) = 0 (1.128a)

First Order: ih̄
d
dt

γ
(1)
k (t) = ∑

n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγ

(0)
n (t)

(1.128b)

Second Order: ih̄
d
dt

γ
(2)
k (t) = ∑

n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγ

(1)
n (t)

(1.128c)

rth Order: ih̄
d
dt

γ
(r)
k (t) = ∑

n

〈
k
∣∣ Ĥ′1(t)

∣∣ n
〉

ei Ek−En
h̄ tγ

(r−1)
n (t)

(1.128d)

At this point, we can set λ = 1 to make the problem we just solved
exactly equivalent the original problem:

Ĥ1(t) = Ĥ′1(t) and γk(t) = γ
(0)
k (t) + γ

(1)
k (t) + γ

(2)
k (t) + . . . (1.129)
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where the power series coefficients γ
(r)
k (t) are still governed by the

set of equations 1.128. In principle if we calculated every single
γ
(r)
k (t) for r = 0 to r = ∞ and summed them, we would find the

exact coefficient γk(t) for each eigenstate19 in the superposition 1.123. 19 Remember, k and n were simply
placeholders for arbitrary eigenstates.
If the switch in index confuses you,
simply make the replacement k → n in
1.128 and 1.129.

However, the relevant physics of a problem is usually contained in
just the first three terms γ

(0)
k (t), γ

(1)
k (t), and γ

(2)
k (t) - up to second

order.

1.6 First-Order Theory

In some cases we can get away with calculating just the first two
terms γ

(0)
k (t) and γ

(1)
k (t). From here on out we assume that at an

initial time t = t0 the system is in an eigenstate of Ĥ0 labeled |i〉,
which means |γi(t0)|2 = γi(t0) = 1. Since 1.128a tells us that the
zeroth order coefficient γ

(0)
k (t) will not change in time, it will equal

unity for k = i and zero for k 6= i:

γ
(0)
k (t) = δik (1.130)

Plugging this result into 1.128b, the Kronecker delta collapses the
sum to the n = i term only:

ih̄
d
dt

γ
(1)
k (t) =

〈
k
∣∣ Ĥ′1(t)

∣∣ i
〉

ei Ek−Ei
h̄ tγ

(0)
i (t) (1.131)

We can then integrate 1.131 to find20: 20 We used that γ
(1)
k (t0) = 0 since

γk(t0) = γ
(0)
k (t0) = 1

γ
(1)
k (t) = 1

ih̄

∫ t
t0

〈
k
∣∣ Ĥ′1(t

′)
∣∣ i
〉

ei Ek−Ei
h̄ t′dt′ (1.132)

We are often interested in finding the probability of the quantum
system transitioning from an initial state |i〉 to a different state |k〉
at time t, where k 6= i. This is simply the probability of the system
simply being in the state |k〉 at time t, which gives:

Pi→k = |γk(t)|2 =
∣∣∣γ(0)

k (t) + γ
(1)
k (t)

∣∣∣2
=

1
h̄2

∣∣∣∣∫ t

t0

〈
k
∣∣ Ĥ′1(t

′)
∣∣ i
〉

ei Ek−Ei
h̄ t′

∣∣∣∣2 dt′ (1.133)

We have thus found that the first-order effect of a perturbation is
to induce transitions into other states with probability Pi→k. A few
examples will now provide physical intuition for this result.
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Example (Collision Process): Suppose the stationary Hamiltonian
H0 above is an atomic Hamiltonian, in which the atom is susceptible
to collisions. We model a collision process as a perturbation:

Ĥ1(t) = Ŵ f (t) (1.134)

in which Ŵ is a constant operator that acts on the atomic system and
f (t) is a function for which f (±∞) → 0 and the maximum value
occurs at t = 0. For convenience we define "before" the collision as
t = −∞ and "after" the collision as t = ∞, so the probability of the
atom initially (t = −∞) in a state |i〉 transitioning to a state |k〉 after
the collision (t = ∞) is:

Pi→k =
|Wki|2

h̄2

∣∣∣∣∫ ∞

−∞
f (t)ei Ek−Ei

h̄ tdt
∣∣∣∣2 where Wki =

〈
k
∣∣ Ŵ ∣∣ i

〉
(1.135)

We now introduce the Fourier transform of f (t) with respect to
energy:

F(E) =
1√
2πh̄

∫ ∞

−∞
f (t)ei E

h̄ tdt (1.136)

By inspection, we can write 1.135 in terms of f (t)’s Fourier transform:

Pi→k =
2π
h̄ |Wki|2|F(Ek − Ei)|2 (1.137)

By writing the probability in this way, we can gain a key piece of
physical insight. A property of Fourier transforms is that the FWHM
widths of f (t) and F(E), which we denote ∆t and ∆E, are related by
an uncertainty principle:

∆E∆t ≈ h̄ (1.138)

Since this gives the width of F(E) as ∆E ≈ h̄
∆t , only states for which

|Ek − Ei| < h̄
2∆t lie within the FWHM range. These will be the states

which will have a signficant probability of occupation.

Example (Sudden Perturbation): Suppose we again have a system
in an initial state |i〉 at time t = 0, and a perturbation Ŵ is applied
at t = 0 with a constant value that lasts forever. The transition
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probability will thus be:

Pi→k(t) =
|Wki|2

h̄2

∣∣∣∣∫ t

0
ei Ek−Ei

h̄ t′dt′
∣∣∣∣2

=
|Wki|2

h̄2
h̄2

|Ek − Ei|2

∣∣∣∣ei Ek−Ei
h̄ t − 1

∣∣∣∣2
=
|Wki|2

h̄2
h̄2

|Ek − Ei|2

[
2− 2cos

(
Ek − Ei

h̄
t
)]

=
|Wki|2

h̄2
4h̄2

|Ek − Ei|2
sin2

(
Ek − Ei

2h̄
t
)

=
|Wki|2

h̄2 sinc2
(

Ek − Ei
2h̄

t
)

t2 (1.139)

This is an interesting result that we’ve just derived. Some key points:

• If we take t→ ∞, the probability will go to zero unless Ek = Ei.

• Its width is approximately21 ∆E ≈ 2πh̄
t , implying that only states 21 We use the value Ek − Ei = ± 2h̄

t
π
2 as a

rough estimate of the half-max locationsof energy Ei − πh̄
t < Ek < Ei +

πh̄
t have a significant probability of

occupation.

• The area A of the probability at a time t will be the product of its
maximum value (at Ek = Ei) and its first zero (at Ek − Ei = π 2h̄

t )
which gives22: 22 We made the convenient variable

substitution E = Ek − Ei

A =
∫ ∞

−∞

|Wki|2

h̄2 sinc2
(

E
2h̄

t
)

t2dE =
|Wki|2t2

h̄2

(
π

2h̄
t

)
=

2π|Wki|2t
h̄
(1.140)

Why did we write these parameters down? Notice that for large t, the
transition probability goes to zero outside a small range of Ek − Ei = 0
and the width approaches zero. This is very reminiscent of a Dirac
delta function, which prompts us to write:

lim
t→∞

Pi→k(t) ≈
2π|Wki |2t

h̄ δ(Ek − Ei) (1.141)

which, because of the Dirac delta, is a function that only makes sense
under an integral23. 23 A bit of second-order theory foreshad-

owing

Example (Sinusoidal Perturbation): We consider yet again a system
in an initial state |i〉 at time t = 0, except this time the perturbation
has a sinusoidal time dependence:

Ĥ1(t) = Ŵcos(ωt + ϕ) =
Ŵ
2

[
ei(ωt+ϕ) + e−i(ωt+ϕ)

]
(1.142)

The transition probability will thus be24: 24 We substitute in the transition fre-
quency ωki =

Ek−Ei
h̄
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Pi→k =
|Wki|2

4h̄2

∣∣∣∣∫ t

0

(
ei(ωki+ω)t′+iϕ + ei(ωki−ω)t′−iϕ

)
dt′
∣∣∣∣2

=
|Wki|2

4h̄2

∣∣∣∣∣ ei(ωki+ω)t+iϕ − eiϕ

i(ωki + ω)
+

ei(ωki−ω)t−iϕ − e−iϕ

i(ωki −ω)

∣∣∣∣∣
2

(1.143)

At this point we could chug through the algebra and obtain a messy
expression, but the result would be unilluminating. A better way
would be to note that the transition probability is extremely small
unless |ωki − ω| � ω, a condition that is called quasi-resonant
excitation. Under this condition, the denominator of the first bracket
term remains large, but that of the second term becomes small25. We 25 This is assuming ωki > 0. For ωki < 0,

we would repeat the same following
analysis except the second term would
be neglected instead of the first.

thus neglect the first term, an approximation known as the rotating-
wave approximation (RWA)26. The probability thus becomes:

26 The name of the RWA originates from
NMR, for which much of semi-classical
theory was originally developed.Pi→k ≈

|Wki|2

4h̄2

∣∣∣∣∣ ei(ωki−ω)t−iϕ − e−iϕ

i(ωki −ω)

∣∣∣∣∣
2

=
|Wki|2

4h̄2

(
2− 2cos [(ωki −ω)t]

(ωki −ω)2

)
=
|Wki|2

4h̄2 sinc2
(

ωki −ω

2
t
)

t2

=
|Wki|2

4h̄2 sinc2
(

Ek − Ei − h̄ω

2h̄
t
)

t2 (1.144)

Following the analysis of the previous example, we again find the
parameters of this function:

• Only states with energy Ei + h̄ω − h̄π
t < Ek < Ei + h̄ω + h̄π

t will
have an appreciable population.

• The transition probability has an area:

A =
2h̄π

t

(
|Wki|2

4h̄2 t2
)
=

π|Wki|2t
2h̄

(1.145)

For long interaction time t, the probability becomes a Dirac delta:

lim
t→∞

Pi→k ≈
π|Wki |2t

2h̄ δ(Ek − Ei − h̄ω) (1.146)

This is an unexpectedly elegant result. We see that the Dirac delta
allows transitions only for which the energy level separation Ek − Ei =

h̄ω, which implies that any change in the system’s energy will occur
by emission or absorption of an energy h̄ω27. 27 After quantizing the fields, we will

formally recognize this as a photon
energy. Until then, you’re not supposed
to know what a photon is!
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1.7 When is Second-Order Theory Necessary?

The most obvious situation in which we must go beyond first-order
theory is when there is no direct coupling between the initial state |i〉
and another state |k〉, which means Wki =

〈
k
∣∣ Ĥ1(t)

∣∣ i
〉
= 0. In this

situation, 1.133 tells us that there is zero probability of transitioning
to state |k〉. However if there is a third state |j〉 which is coupled to
|k〉, meaning Wjk 6= 0, the system should be able to transition to
|j〉 and then to |k〉. This is behavior that first-order theory does not
predict, so onward to second-order theory!

1.8 Second-Order Theory

Suppose we have the situation described above, in which
〈
k
∣∣ Ĥ1(t)

∣∣ i
〉
=

0. The first-order coefficient therefore vanishes:

γ
(1)
k (t) = 0 (1.147)

Those for the other states |j〉 where j 6= k are given by:

γ
(1)
j (t) =

1
ih̄

∫ t

0

〈
j
∣∣ Ĥ1(t′)

∣∣ i
〉

ei
Ej−Ei

h̄ t′dt′ (1.148)

We then plug 1.147 and 1.148 into the second-order equation 1.128c to
solve for γ

(2)
k (t):

γ
(2)
k (t) = 1

(ih̄)2

∫ t
0 ∑

j 6=i,k

〈
k
∣∣ Ĥ1(t′)

∣∣ j
〉

ei
Ek−Ej

h̄ t′ ∫ t′
0

〈
j
∣∣ Ĥ1(t′′)

∣∣ i
〉

ei
Ej−Ei

h̄ t′′dt′′dt′

(1.149)

where the limit of the summation means that we sum over all values
of j not equal to k and i. We exclude k since28 γ

(1)
k (t) = 0, and we 28 Physically, the term j = i is equivalent

to the state transitioning from |i〉 to |i〉,
then to |k〉. This is obviously verboden,
so we exclude it.

exclude i since the first Bra-ket would become
〈
k
∣∣ Ĥ1(t′)

∣∣ i
〉
= 0.

Example (Ramp Process): We again model the perturbation as
Ĥ1(t) = Ŵ f (t), which we examined in an earlier example. However,
this time we consider f (t) as a ramp function which increases from 0

to 1 over a time period θ. For convenience, we assign t = 0 according
to f (0) = 1

2 . To make the calculation simple, we also assume the
following29: 29 Remember 1

ωij
= h̄

Ei−Ej
, and can be

thought of loosely as the characteristic
transition time between levels |i〉 and |j〉t� θ � 1

|ωij|
(1.150)

The physical interpretation of this condition is that we consider times
long after the perturbation occurred, and that the transition time

1
|ωij |

is much shorter than all the other time-scales in the problem.
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Plugging this perturbation Ĥ1(t) = Ŵ f (t) into 1.149, and integrate
starting from a time t = t0 which is before the ramp occurs30: 30 We switch the order of the summation

and integration, which is generally
kosher in physics. If this bothers you,
you should be a mathematician.

γ
(2)
k (t) =

1
(ih̄)2 ∑

j 6=i,k
WkjWji

∫ t

t0

f (t′)ei
Ek−Ej

h̄ t′
∫ t′

t0

f (t′′)ei
Ej−Ei

h̄ t′′dt′′dt′

(1.151)

We first do the inside integral over t′′ by parts31: 31 Remember f (t0) = 0, since its before
the ramp occurred.∫ t′

t0

f (t′′)ei
Ej−Ei

h̄ t′′dt′′ =
h̄

i(Ej − Ei)

[
ei

Ej−Ei
h̄ t′ f (t′)−

∫ t′

t0

ei
Ej−Ei

h̄ t′′ f ′(t′′)dt′′
]

(1.152)
Since the second term in the brackets is much smaller than the first32, 32 If you want to prove this, integrate

the second term by parts as well.
You will obtain one term which is
smaller than the first bracket term by a

factor of h̄ f ′(t′′)
i(Ej−Ei)

, and another integral

proportional to f ′′(t′′), which will be
close to zero for all time.

we keep only the first term to find:

γ
(2)
k (t) = − 1

ih̄ ∑
j 6=i,k

WkjWji

Ej − Ei

∫ t

t0

ei Ek−Ei
h̄ t′ ( f (t′)

)2 dt′

≈ − 1
ih̄ ∑

j 6=i,k

WkjWji

Ej − Ei

∫ t

0
ei Ek−Ei

h̄ t′dt′

= − 1
ih̄ ∑

j 6=i,k

WkjWji

Ej − Ei

h̄
i(Ek − Ei)

(
ei Ek−Ei

h̄ t − 1
)

(1.153)

where the approximations ( f (t′))2 ≈ 1 and t0 ≈ 0 in the second line
are made since we are considering times t long after the ramp occurs
(see 1.150), so the bulk contribution of the integral occurs for t > 0.
The transition probability is thus:

Pi→k = |γ
(2)
k (t)|2

=
1
h̄2

∣∣∣∣∣ ∑
j 6=i,k

WkjWji

Ej − Ei

∣∣∣∣∣
2 (

h̄
Ek − Ei

)2 [
2− 2cos

(
Ek − Ei

h̄
t
)]

=
1
h̄2

∣∣∣∣∣ ∑
j 6=i,k

WkjWji

Ej − Ei

∣∣∣∣∣
2 (

h̄
Ek − Ei

)2
4sin2

(
Ek − Ei

2h̄
t
)

=
1
h̄2

∣∣∣∣∣ ∑
j 6=i,k

WkjWji

Ej − Ei

∣∣∣∣∣
2

sinc2
(

Ek − Ei
2h̄

t
)

t2

≈
∣∣∣∣∣ ∑

j 6=i,k

WkjWji

Ej − Ei

∣∣∣∣∣
2

2π

h̄
δ (Ek − Ei) t (1.154)

where the delta function approximation occurred naturally since we
considered times long after the ramp from the beginning (see 1.150).
This is suspiciously similar to the sudden perturbation result 1.141

derived from first-order theory33. We can cast it in the same form by 33 Unsurprising, since the ramp function
looks like a step function for time t long
after the ramp.

defining an effective perturbation We f f
ki :

Pi→k ≈
2πWe f f

ki t
h̄ δ(Ek − Ei) where We f f

ki =

∣∣∣∣∣ ∑
j 6=i,k

WkjWji

Ej − Ei

∣∣∣∣∣
2

(1.155)
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This effective perturbation34 We f f
ki captures the physical reasoning we 34 We will also show later that a pertur-

bation Ĥ1(t) will shift the energy levels
Ei of a system according to the effective

perturbation: ∆Ei = We f f
ii =

∣∣∣∣∣∑
j 6=i

WijWji
Ej−Ei

∣∣∣∣∣
2

stated in the previous section - it sums over all other paths to state |k〉
that use a third level |j〉 as an intermediate state. Of course, there are
other paths that involve two, three, or even more intermediate states
which can be accounted for in higher order terms γ

(3)
k (t), γ

(4)
k (t), and

so on35. 35 These tend to have a small effect
on the system dynamics though, so
second-order is generally enough.





Coupling To A Continuum

At this point, it seems like the machinery we’ve developed allows us
to calculate any perturbation effect. By knowing the eigenstates of the
stationary Hamiltonian Ĥ0, we simply calculate the matrix elements
of Ĥ1(t) in the eigenstate basis and plug into 1.128b for the first order
correction (and if needed use 1.128c to also find the second order
corrections) to find that the perturbation induces transitions between
different eigenstates of the system. However, if real systems behaved
this way - by simply transitioning back and forth between eigen-
states/eigenenergies - physics would be quite boring. For a start,
chemical reactions would be impossible since this model implies that
electrons are forbidden from leaving their parent nucleus.

To account for such irreversible processes, we introduce the idea
of a continuum, which is, as the name implies, a set of states with a
continuous range of energies. Since such states cannot be normalized,
it is easier to begin with a so-called quasi-continuum, which is a
set of discrete set of states with very closely spaced energies. After
solving the quasi-continuum problem, it will be straightforward to
adjust the results for a true continuum.

How would we represent a quasi-continuum mathematically? The
best example is the canonical particle of mass m in an in an infinite
square well of width L, in which the energies of each eigenstate |n〉
are given by:

En =
h̄2π2

2mL2 n2 where n = 0, 1, . . . (2.1)

The separation between energy levels En and En+1 are given by:

∆E =
h̄2π2

mL2 n (2.2)

We see that the energy spacing depends inversely on the well width
L, so as the width goes to infinity the energy spacing goes to zero
and we obtain a continuum. There are strict limitations on solving
problems this way however, which we will discuss after the calcula-
tion.
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2.1 1 Discrete Level and Continuum (perturbative soln.)

Suppose we have a Hamiltonian Ĥ0 whos eigenstates are a single
discrete state |i〉 with energy Ei = 0 that the system starts out in,
and a quasi-continuum of states |k〉 due to a infinite square well. For
simplicity, we assume that the well is modified in some way36 so that 36 Notice that the walls of the well are

still at infinite potential though, so the
wavefunction amplitudes inside the
well must still obey the normalization
condition ψ ∝ 1√

L

the energies are equally spaced and defined by:

Ek = εk and ∆E = ε, where k = −∞ . . . ∞ (2.3)

where we relate the energy spacing and well width according to 2.2:

ε ∝
1
L2 (2.4)

This dependence on L will be critical when connecting our result for
a quasi-continuum to that of a real continuum. We then assume a
constant perturbation Ĥ1(t) = Ŵ, with coupling matrix elements:

Wki =
〈
k
∣∣ Ŵ ∣∣ i

〉
= w and

〈
k
∣∣ Ŵ ∣∣ k′

〉
=
〈
i
∣∣ Ŵ ∣∣ i

〉
= 0 (2.5)

This means that the system can transition from the discrete state |i〉
to any quasi-continuum state |k〉, but may not transition between
different quasi-continuum states |k〉 and |k′〉. We also assume w
is real, which means

〈
i
∣∣ Ŵ ∣∣ k

〉
= w as well. Recall the transition

probability for a constant perturbation found in 1.139 (for Ei = 0 and
Wki = w):

Pi→k(t) =
w2

h̄2 sinc2
(

Ek
2h̄

t
)

t2 (2.6)

We would now like to find the probability that the system will be in
|i〉 at a time t. This will be given by 100% minus the probability of
the system transitioning from |i〉, which will be the sum of Pi→k for
every individual |k〉:

Pi(t) = 1−
∞

∑
k=−∞

Pi→k(t)

= 1−
∞

∑
k=−∞

w2

h̄2 sinc2
(

Ek
2h̄

t
)

t2 (2.7)

If we take37 the energy separation ε to be small compared to the sinc 37 Recall that ε ∝ 1
L , so we can make the

well width L, which is arbitrary at this
point, to be as large as we need.

function width 2πh̄
t , the sinc function will vary slowly with respect to

k. This allows us to convert the summation into an integral38, which
38 We use Ek = εk→ dk = 1

ε dEk .
we’ve already solved (see 1.140):

Pi(t) = 1−
∫ w2

h̄2 sinc2
(

Ek
2h̄

t
)

t2dk

= 1− 1
ε

∫ w2

h̄2 sinc2
(

Ek
2h̄

t
)

t2dEk

= 1− 2πw2

h̄ε
t (2.8)
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We can write this in terms of a departure probability per unit time Γ:

Pi(t) = 1− Γt where Γ =
2πw2

h̄ε
(2.9)

Where does the well-width show up in Γ? The matrix element w is
proportional39 to 1

L , and the energy spacing ε is proportional to 1
L2 . 39 The Bra-ket makes w proportional to

the wavefunction squared. The wave-
functions themselves are proportional
to 1√

L
.

We thus find that Γ is independent of L, so we can take L → ∞ and
our result doesn’t change. By solving the quasi-continuum problem,
we have therefore inadvertently solved the true continuum problem
as well! Unfortunately the result we have derived tells us that, for
t > 1

Γ , we will obtain a negative occupation probability for |i〉. This
unphysical result means that our result is valid for only short times t,
specifically:

Condition 1: t� 1
Γ

(2.10)

There is also a second condition for our result to be valid, which
allowed us to convert the sum to an integral:

Condition 2: ε� 2πh̄
t
→ t� 2πh̄

ε
(2.11)

Another important point is that real continuums will not extend
over an infinite range of energies, as Ek does, but instead over a
finite range ∆. This energy range must be much wider than the sinc
function width 2πh̄

t in 2.8, or else the integral will be "clipped" and
the departure probability will be less than Γ. This condition can be
written as:

Condition 3: ∆� 2πh̄
t

(2.12)

We will examine this situation in a later example.

2.2 1 Discrete Level and Continuum (non-perturbative soln.)

There are, of course, situations in which we would like to examine
the system after long periods of time t > 1

Γ . In 1930, Victor Weisskopf
and Eugene Wigner developed a non-perturbative method to do just
that40, of which we use a simplified version. 40 See Berechnung der natÃijrlichen

Linienbreite auf Grund der Diracschen
Lichttheorie. Zeitschrift für Physik 63, 1,
(1930). Hopefully you read German!

We write the wave function in terms of their associated coefficients:

|ψ(t)〉 = γi(t) |i〉+
∞

∑
k=−∞

γk(t)e−i εk
h̄ t |k〉 (2.13)

Recalling the matrix elements Wki = Wik = w and Wkk′ = Wii = 0, we
use 1.125 to write two equations:

ih̄
d
dt

γk(t) = wei Ek
h̄ tγi(t) (2.14)

ih̄
d
dt

γi(t) =
∞

∑
k=−∞

we−i Ek
h̄ tγk(t) (2.15)
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We can solve the first equation by simple integration41: 41 Remember γk(0) = 0 since the system
is initially in state |i〉

γk(t) =
w
ih̄

∫ t

0
γi(t′)ei Ek

h̄ t′dt′ (2.16)

Plugging 2.16 into 2.15, and converting the summation to an inte-
gral42: 42 Assuming the energy spacing ε is

small compared to h̄
t .

d
dt

γi(t) = −
w2

h̄2

∞

∑
k=−∞

e−i Ek
h̄ t
∫ t

0
γi(t′)ei Ek

h̄ t′dt′

= − Γ
2πh̄

∫ t

0
γi(t′)

[
∞

∑
k=−∞

εei Ek
h̄ (t′−t)

]
dt′

= − Γ
2πh̄

∫ t

0
γi(t′)

[∫ ∞

−∞
εei Ek

h̄ (t′−t)dk
]

dt′

= − Γ
2πh̄

∫ t

0
γi(t′)

[∫ ∞

−∞
ei Ek

h̄ (t′−t)dEk

]
dt′

= − Γ
2πh̄

∫ t

0
γi(t′)2πh̄δ(t′ − t)dt′

= −Γ
∫ 0

−t
γi(t + τ)δ(τ)dτ

= −Γ
2

γi(t) (2.17)

where in the last two lines we made the substitution τ = t′ − t)
and used the result43

∫ 0
−a δ(t)dt = 1

2

∫ a
−a δ(t)dt = 1

2 . 2.17 is as 43 Usually, when the delta function is
constructed (such as by a sinc2 function
in previous examples) it is defined as
an even function centered around zero.
If the total integral is equal to unity,
then it makes sense intuitively that
integrating only up to zero would equal
1
2 . This is not a mathematically rigorous
explanation however, so one must look
elsewhere for a more kosher derivation.

straightforward a differential equation as it gets, so we find:

γi(t) = e−
Γ
2 t (2.18)

which gives the occupation probability of |i〉:

Pi(t) = |γi(t)|2 = e−Γt (2.19)

Also, if we expand 2.18 as a Taylor series:

Pi(t) = 1 + (−Γt) +
(−Γt)2

2!
+

(−Γt)3

3!
+ . . . (2.20)

the first two terms give us Pi(t) ≈ 1− Γt, which is exactly the short-
time occupation probability found in 2.9.

We can then substitute 2.18 into 2.14 to find the coefficients for |k〉:

γk(t) =
w
ih̄

e
(

i Ek
h̄ −

Γ
2

)
t − 1

i Ek
h̄ −

Γ
2

= w
1− e

(
i Ek

h̄ −
Γ
2

)
t

Ek + i h̄Γ
2

(2.21)
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Which gives the occupation probability for each state |k〉:

Pk(t) = |γk(t)|2 =
w2

E2
k +

(
h̄Γ
2

)2

[
1 + e−Γt

(
1− 2cos

(
Ek
h̄

))]
(2.22)

It’s interesting to look at the long-time behavior as well:

lim
t→∞

Pk(t) =
w2

E2
k +

(
h̄Γ
2

)2 (2.23)

We thus see that for t → ∞, the occupation probability for |i〉 goes
to zero while the probability distribution for |k〉 is a Lorentzian
distribution with FWHM = h̄Γ.

2.3 1 Discrete Level and Continuum With Varied Coupling

Consider the same situation described in the previous 2 sections,
with a discrete level coupled to a continuum of states |k〉 with equally
separated energies Ek = εk. This time however, the matrix elements
are given by:

Wki = wk =
w√

1 +
(

Ek
∆

)2
and Wkk′ = Wii = 0 (2.24)

The coupling between |i〉 and the continuum |k〉 is thus a Lorentzian,
so the continuum has44 an "effective width" ∆. 44 By effective width, we mean that

states |k〉 outside the FWHM width ∆
are weakly coupled to |i〉 and thus have
a decreasing probability of transition.
Roughly, the states inside the FWHM
width are those that result in the
non-negligible transitions.

We begin with the same equations used in the constant coupling
solution, 2.14 and 2.15, with the only difference in the problems being
w→ wk:

ih̄
d
dt

γk(t) = wkei Ek
h̄ tγi(t) (2.25)

ih̄
d
dt

γi(t) =
∞

∑
k=−∞

wke−i Ek
h̄ tγk(t) (2.26)

Integrating the first equation:

γk(t) =
∫ t

0

wk
ih̄

ei Ek
h̄ t′γi(t′)dt′ (2.27)

We plug 2.27 into 2.26 to find:

d
dt

γi(t) = −
∫ t

0
γi(t′)

[
∞

∑
k=−∞

w2
k

h̄
ei Ek

h̄ (t′−t)

]
dt′ (2.28)

Again assuming the energy spacing ε is small compared to h̄
t , we

can convert the summation inside the brackets to an integral and
evaluate45: 45 Remember how to contour integrate?
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∞

∑
k=−∞

w2
k

h̄
ei Ek

h̄ (t′−t) =
∫ ∞

−∞

w2

εh̄2
ei Ek

h̄ (t−t′)

1 +
(

E
∆

)2 dE

=
πw2∆

εh̄2 e−
∆
h̄ |t
′−t| (2.29)

Substituting 2.29 into 2.28, we find:

d
dt

γi(t) = −
Γ∆
2h̄

∫ t

0
γi(t′)e

∆
h̄ (t
′−t)dt′ (2.30)

Recalling the rule for differentiation under the integral sign46: 46 For more details, see Wikipedia.

d
dx

∫ b(x)

a(x)
f (x, t)dt = f (x, b(x))b′(x)− f (x, a(x))a′(x)+

∫ b(x)

a(x)

∂

∂x
f (x, t)dt

(2.31)
2.30 may be recast elegantly by taking the derivative of both sides:

d2

dt2 γi(t) = −
Γ∆
2h̄

d
dt

∫ t

0
γi(t′)e

∆
h̄ (t
′−t)dt′

= −Γ∆
2h̄

[
γi(t)−

∆
h̄

∫ t

0
γi(t′)e

∆
h̄ (t
′−t)dt′

]
= −Γ∆

2h̄

[
γi(t) +

2
Γ

d
dt

γi(t)
]

(2.32)

This is now an ordinary differential equation for γi(t), which we can
solve straightforwardly:

γi(t) = e
∆
2Γ t (c1ert + c2e−rt) where r =

√(
∆
2Γ

)2
− Γ∆

2h̄
(2.33)

https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign


Two-Level Systems

3.1 Coupling to a Stochastic Bath

Consider a two-level system with a Hamiltonian split into a station-
ary part Ĥ0 and a time-dependent perturbation Ĥ1(t):

Ĥ = Ĥ0 + Ĥ1(t) (3.1)

where the stationary Hamiltonian is the standard two levels with
energies E = 0 and E = E0:

Ĥ0 = E0 |1〉 〈1| (3.2)

and we assume a bilinear coupling of the form:

Ĥ1(t) = H11(t) |1〉 〈1|+ H01(t) |0〉 〈1|+ H10(t) |1〉 〈0|
= h̄∆(t) |1〉 〈1|+ h̄Λ(t) |1〉 〈0|+ h̄Λ∗(t) |0〉 〈1| (3.3)

where we’ve defined the stochastic processes:

∆(t) =
1
h̄

H11(t) (3.4)

Λ(t) =
1
h̄

H10(t) (3.5)

Λ∗(t) =
1
h̄

H01(t) (3.6)





Field-Particle Perturbation

We now discuss arguably the most important perturbation: that from
an applied field. The simplest system one could consider is a single
particle, which can be perturbed by electric and magnetic fields E(r, t)
and B(r, t).

4.1 Potentials

As a review, from electromagnetics we know that these fields can be
represented through vector and scalar potentials A(r, t) and ϕ(r, t)
respectively by:

B(r, t) = ∇×A(r, t) (4.1)

E(r, t) = − ∂

∂t
A(r, t)−∇ϕ(r, t) (4.2)

These potentials A(r, t) and ϕ(r, t) come in pairs47, which are related 47 There is an infinite number of these
pairs, since there is an infinite number
of functions F(r, t) they could be related
by. Each of these pairs will give the
same identical field.

by an arbitrary scalar function F(r, t):

A′(r, t) = A(r, t) +∇F(r, t) (4.3)

ϕ′(r, t) = ϕ(r, t)− ∂

∂t
F(r, t) (4.4)

These relations between pairs {A(r, t), ϕ(r, t)} , {A′(r, t), ϕ′(r, t)}. . . are
called gauge transformations. Some pairs will be more convenient
than others in certain problems, so to specify which pair to use we
impose an artificial constraint called a gauge condition. There are
two gauge conditions that are commonly used in atomic physics - the
Coulomb gauge and Göppert Mayer gauge. We will discuss them in
the following sections.

4.2 Field-Particle Hamiltonian

We present from the outset, the atom-field Hamiltonian for a single
particle of mass m and charge q:

Ĥ =
1

2m
(p̂− qA(r̂, t))2 + qϕ(r̂, t) (4.5)
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There are two ways to justify this Hamiltonian:

1. A practical approach, where it is simply shown that this Hamilto-
nian recovers the correct equation of motion that we would expect
from the classical Lorentz force.

2. A more rigorous approach, where the Hamiltonian is constructed
from the particle-field Lagrangian.

We shall take the first approach for now, and take the second after
quantizing the field in a later chapter.

4.3 Justification of the Field-Particle Hamiltonian

We first recall the generalized Ehrenfest’s theorem48 for an arbitrary 48 Paul Ehrenfest derived the specific re-
lation between the position/momentum
operators and their derivatives. Werner
Heisenberg was actually the one who
derived the general general relation for
any operator’s time derivative.

operator Â:
d
dt
〈

Â
〉
=

1
ih̄
〈[

Â, Ĥ
]〉

+

〈
∂

∂t
Â
〉

(4.6)

For convenience, we will calculate the commutator of x̂ and Ĥ (we
drop the r̂ and t dependences of A(r̂, t) and ϕ(r̂, t) for brevity):[

x̂, Ĥ
]
= x̂

(
(p̂− qA)2

2m
+ qϕ

)
−
(
(p̂− qA)2

2m
+ qϕ

)
x̂

= x̂
(p̂− qA)2

2m
− (p̂− qA)2

2m
x̂

=
1

2m
{x̂ (p̂− qA) (p̂− qA)− (p̂− qA) (p̂− qA) x̂}

=
1

2m
{((p̂− qA) x̂− [p̂− qA, x̂]) (p̂− qA)

− (p̂− qA) (x̂ (p̂− qA) + [p̂− qA, x̂])}

=
1

2m
{2ih̄ (p̂− qA) + (p̂− qA) x̂ (p̂− qA)

− (p̂− qA) x̂ (p̂− qA)}

=
ih̄
m
(p̂− qA) (4.7)

In this lengthy derivation, the following relations were used:

• The scalar potential ϕ(r, t) is only a function of position49, so it 49 We leave out time, since there is no
associated operator for t.commutes with x̂.

• Since A(r̂, t) is also only a function of position, it drops out of the
following commutator: [p̂− qA, x̂] = [p̂, x̂] = [px, x̂] = −ih̄

The time derivative of the x position operator, the x component
velocity, can thus be found by 4.6 and 4.7:

d
dt
〈x̂〉 = v̂x =

1
ih̄
〈[

x̂, Ĥ
]〉

+

〈
∂

∂t
x̂
〉

=
p̂− qA

m
(4.8)
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The same procedure can be used to find v̂y and v̂z, so we can general-
ize 4.8 for the vector v̂:

v̂ =
p̂− qA

m
(4.9)

The Hamiltonian can thus be written in terms of v̂:

Ĥ =
1
2

mv̂2 + qϕ (4.10)

which is exactly what we would expect from our classical intuition.
Although the clues are all there, we now go further and derive the

Lorentz force equation of motion in operator form. To do so, we first
need the commutation relations between the velocity components50: 50 Note that the different components of

A commute, since they are all functions
of only position.

[v̂x, v̂y] =
1

m2

[
(px − qAx)

(
py − qAy

)
−
(

py − qAy
)
(px − qAx)

]
=

q
m2

([
Ay, px

]
+
[
Ax, py

])
= ih̄

q
m2

(
∂Ay

∂x
+

∂Ax

∂y

)
= ih̄

q
m2 Bz(r̂, t) (4.11)

and by the same reasoning:

[v̂y, v̂z] = ih̄
q

m2 Bx(r̂, t) (4.12)

[v̂z, v̂x] = ih̄
q

m2 By(r̂, t) (4.13)

Our next step is to write the equation of motion for v̂ using Ehren-
fest’s theorem. In anticipation of this calculation, we have a few
quantities to calculate beforehand:

∂

∂t
v̂x = − q

m
∂Ax

∂t
(4.14)

[v̂x, ϕ] =
1
m

[px, ϕ] = − ih̄
m

∂ϕ

∂x
(4.15)

[v̂x, Ĥ] =

[
v̂x,

1
2

mv̂2 + qϕ

]
=

m
2

([
v̂x, v̂2

y

]
+
[
v̂x, v̂2

z

])
+ q [v̂x, ϕ]

=
m
2
{(

[v̂x, v̂y] + v̂yv̂x
)

v̂y − v̂y
(
v̂x v̂y − [v̂x, v̂y]

)
+ ([v̂x, v̂z] + v̂zv̂x) v̂z − v̂z (v̂x v̂z − [v̂x, v̂z])} −

ih̄q
m

∂ϕ

∂x

=
m
2
(
[v̂x, v̂y]v̂y + v̂y[v̂x, v̂y] + [v̂x, v̂z]v̂z + v̂z[v̂x, v̂z]

)
− ih̄q

m
∂ϕ

∂x

=
ih̄q
2m

(
Bzv̂y + v̂yBz − Byv̂z − v̂zBy

)
− ih̄q

m
∂ϕ

∂x
(4.16)
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We now use 4.6, 4.14, and 4.15 to find:

d
dt
〈v̂x〉 =

1
ih̄
〈[

v̂x, Ĥ
]〉

+

〈
∂

∂t
v̂x

〉
=

q
2m

〈
Bzv̂y + v̂yBz − Byv̂z − v̂zBy

〉
− q

m

〈
∂ϕ

∂x
+

∂Ax

∂t

〉
(4.17)

By the same reasoning:

d
dt
〈
v̂y
〉
=

q
2m
〈Bx v̂z + v̂zBx − Bzv̂x − v̂xBz〉 −

q
m

〈
∂ϕ

∂y
+

∂Ay

∂t

〉
(4.18)

d
dt
〈v̂z〉 =

q
2m

〈
v̂xBy + Byv̂x − v̂yBx − Bx v̂y

〉
− q

m

〈
∂ϕ

∂z
+

∂Az

∂t

〉
(4.19)

By inspection, we can combine 4.17, 4.18, and 4.19 into a single vector
equation:

m
d
dt
〈v̂〉 = q

〈
v̂× B(r̂, t)− B(r̂, t)× v̂

2

〉
+ q 〈E(r̂, t)〉

= q 〈v̂× B(r̂, t)〉+ q 〈E(r̂, t)〉 (4.20)

We have thus derived from the Field-Particle Hamiltonian the op-
erator form of the Lorentz force equation of motion. Though not
a rigorous proof of the validity of 4.5, it is hopefully compelling
enough to make the results obtained by using this Hamiltonian seem
plausible.
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