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Classical Phase Space Time-Evolution

Consider a classical particle moving in a well-defined potential. Given initial
conditions for the position and momentum x0 and p0 at a time t = 0, which we
write as a position in phase space [x0, p0; 0], its position and momentum will
evolve classically in a time ∆t to definite values:

[x0, p0; 0]
∆t−−→ [xcl(x0, p0,∆t), pcl(x0, p0,∆t); ∆t] (1)

Just to clarify, the notation xcl(x0, p0, t
′) defines the position of the particle at a

time t = t′ with the initial conditions x = x0 and p = p0 at t = 0. The meaning
of pcl(x0, p0, t

′) is analogous.
Note that the evolution of the position and momentum in a time ∆t is

independent of the initial time. That is, for some arbitrary initial time t = t′:

[x0, p0; t′]
∆t−−→ [xcl(x0, p0,∆t), pcl(x0, p0,∆t); t

′ + ∆t] (2)

We can use this reasoning and find the evolution of position and momentum
backwards in time as well, for initial conditions x = x0 and p = p0 at a time
t = t′ + ∆t:

[x0, p0; t′ + ∆t]
∆t←−− [xcl(x0, p0,−∆t), pcl(x0, p0,−∆t); t′] (3)

Phase-Space Probability Density

This is not so useful when considering a particle with well-defined initial con-
ditions that we know exactly. However, suppose our experimental apparatus
for measuring the position and momentum is inexact, and has some uncertainty
to it. In this case we can only define a phase-space probability distribution
ρ(x, p, t), which represents the probability density of having position and mo-
mentum values x and p at a time t. We now would like to evaluate the time-
evolution of this probability distribution given its value at an initial time t = t′.

Note that since our particle is classical, we can use equation (3) to claim the
probability of the particle having a position and momentum x = xcl(x0, p0,−∆t)
and p = pcl(x0, p0,−∆t)] at an initial time t = t′ is equal to the probability of
having a position and momentum x = x0 and p = p0 at a later time t = t′+ ∆t,
since the classical evolution is deterministic. This is true for all possible values
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of x0 and p0, so we can generalize this statement to the entire phase space
probability distribution:

ρ(x0, p0, t
′ + ∆t) = ρ(xcl(x0, p0,−∆t), pcl(x0, p0,−∆t), t′) (4)

This statement is not so useful in its current form. To make progress, we Taylor
expand xcl and pcl around t = 0:

xcl(x0, p0, t) = xcl(x0, p0, 0) + ẋcl(x0, p0, 0)t+O(t2) + . . .

pcl(x0, p0, t) = pcl(x0, p0, 0) + ṗcl(x0, p0, 0)t+O(t2) + . . .

Noting that xcl(x0, p0, 0) = x0 and pcl(x0, p0, 0) = p0 since there is no time-
evolution, we write:

xcl(x0, p0,−∆t) = x0 − ẋcl(x0, p0, 0)∆t+O(∆t2) + . . .

= x0 −
∂H

∂pcl
∆t+O(∆t2) + . . . (5)

pcl(x0, p0,−∆t) = p0 − ṗcl(x0, p0, 0)∆t+O(∆t2) + . . .

= p0 +
∂H

∂xcl
∆t+O(∆t2) + . . . (6)

where we used Hamilton’s equations:

ṗcl = − ∂H
∂xcl

and ẋcl =
∂H

∂pcl
(7)

Combining equations (4), (5), and (6), and then Taylor expanding, we find:

ρ(x0, p0, t
′ + ∆t) = ρ

(
x0 −

∂H

∂pcl
∆t+O(∆t2) + . . . , p0 +

∂H

∂xcl
∆t+O(∆t2) + . . . , t′

)
= ρ(x0, p0, t

′) +
∂ρ

∂x

(
− ∂H
∂pcl

∆t+O(∆t2) + . . .

)
+
∂ρ

∂p

(
∂H

∂xcl
∆t+O(∆t2) + . . .

)
(8)

Rearranging and using the definition of a derivative:

∂ρ

∂t
= lim

∆t→0

ρ(x, p, t+ ∆t)− ρ(x, p, t)

∆t

= lim
∆t→0

[
− ∂H
∂pcl

∂ρ

∂x
+
∂H

∂xcl

∂ρ

∂p
+O(∆t) +O(∆t2) + . . .

]
= − ∂H

∂pcl

∂ρ

∂x
+
∂H

∂xcl

∂ρ

∂p

= −iL̂ρ (9)

where we’ve defined the Louiville operator as1:

iL̂ =
∂H

∂pcl

∂

∂x
− ∂H

∂xcl

∂

∂p
(10)

1The factor of i in the definition for L̂ is inserted to be analogous to the quantum Liouville
equation, which governs the time-evolution of the density matrix.
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This can easily be generalized to three dimensions and N particles by:

iL̂ =

N∑
j=1

∂H

∂pj

∂

∂xj
− ∂H

∂xj

∂

∂pj
(11)

where xj and pj refer to the position and momentum of the jth particle.
Equation (11) is known as the classical Liouville equation, and has a formal

solution of the form:

ρ(x, p, t) = e−iL̂tρ(x, p, 0) (12)

where recall, that a function of an operator is defined by its Taylor series:

e−iL̂t =

∞∑
n=1

1

n!
(−iL̂t)n (13)
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