Normal Modes of a 2D Lattice

By: Albert Liu

We now extend the method developed for a 1D lattice to two dimensions. A common system to analyze is a 2 D monatomic lattice with lattice constant a in both dimensions (essentially a square Bravais lattice). For an atom of mass M at position $\left(x_{0}, y_{0}\right)$, a displacement in the \hat{x} direction will result in a restoring force with spring constant K_{1} due to its nearest neighbors at positions $\left(x_{0} \pm a, y_{0}\right)$ and another restoring force with spring constant K_{2} due to the other two nearest neighbors at positions $\left(x_{0}, y_{0} \pm a\right)$.

For an atom at position ($n a, m a$) where n and m are integers, we denote its displacement from equilibrium as $u(n a, m a)$. Newton's third law gives:

$$
\begin{align*}
M \frac{\partial^{2} u(n a, m a)}{\partial t^{2}}= & -K_{1}[2 u(n a, m a)-u([n+1] a, m a)-u([n-1] a, m a)] \\
& -K_{2}[2 u(n a, m a)-u(n a,[m+1] a)-u(n a,[m-1] a)] \tag{1}
\end{align*}
$$

The Born-von Karman (periodic) boundary conditions now imply a plane wave solution:

$$
\begin{equation*}
u(n a, m a)=A e^{i\left(k_{x} n a+k_{y} m a-\omega t\right)} \tag{2}
\end{equation*}
$$

Plugging the assumed solution into the equation of motion:

$$
\begin{equation*}
\omega^{2}=\frac{4 K_{1}}{M} \sin ^{2}\left(\frac{k_{x} a}{2}\right)+\frac{4 K_{2}}{M} \sin ^{2}\left(\frac{k_{y} a}{2}\right) \tag{3}
\end{equation*}
$$

As a quick sanity check, we calculate the dispersion relation for waves propagating in the \hat{x} direction $\left(k_{y}=0\right)$:

$$
\begin{equation*}
\omega^{2}=\sqrt{\frac{4 K_{1}}{M}} \sin ^{2}\left(\frac{k_{x} a}{2}\right) \tag{4}
\end{equation*}
$$

which is the same result we obtained for a 1D monatomic lattice, as expected.

An interesting quantity is the velocity:

$$
\begin{align*}
\mathbf{v} & =\frac{\partial \omega}{\partial k_{x}} \hat{x}+\frac{\partial \omega}{\partial k_{y}} \hat{y} \tag{5}\\
& =\frac{a}{M \omega}\left[K_{1} \sin \left(k_{x} a\right) \hat{x}+K_{2} \sin \left(k_{y} a\right) \hat{y}\right] \tag{6}
\end{align*}
$$

with magnitude:

$$
\begin{equation*}
v=\frac{a}{M \omega} \sqrt{K_{1}^{2} \sin ^{2}\left(k_{x} a\right)+K_{2}^{2} \sin ^{2}\left(k_{y} a\right)} \tag{7}
\end{equation*}
$$

