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Classical statistical mechanics predicts that a free particle will have a heat
capacity of 3

2kB per particle, which gives an electron gas formed by N atoms
each contributing one valence electrons a heat capacity of 3

2NkB . However,
experimental values for the electron gas heat capacity at room temperatures
are usually less than 0.01 of this value.

We now know that this discrepancy is because the Pauli exclusion principle
and Fermi-Dirac distribution were not accounted for. Examining the Fermi-
Dirac distribution as temperature changes, we see that at temperatures of order
103 or less, only the electrons near the Fermi energy (approximately within
∆E = kBT ) have a chance of being thermally excited.

To calculate the heat capacity, we note the identities:

N =

∫ ∞
0

f(E)D(E)dE (1)

N =

∫ EF

0

D(E)dE (2)

where the second identity comes from the definition of EF - the energy of the
highest occupied state at absolute zero, in which all states with energy beneath
EF are filled. Setting these two identities equal to each other, multiplying by
EF , and splitting the first integral into two parts:∫ EF

0

EF f(E)D(E)dE +

∫ ∞
EF

EF f(E)D(E)dE =

∫ EF

0

EFD(E)dE (3)

Defining the increase in energy of a system heated from absolute zero:

∆U = U(T )− U(0) =

∫ ∞
0

Ef(E)D(E)dE −
∫ EF

0

ED(E)dE (4)

Note that we can rewrite (3) as:∫ EF

0

EFD(E)dE −
∫ EF

0

EF f(E)D(E)dE −
∫ ∞
EF

EF f(E)D(E)dE = 0

Since this relation is equal to zero, we can add it to the right side of (4) without
changing the equality:

∆U =

∫ EF

0

D(E) [Ef(E)− E + EF − EF f(E)] dE +

∫ ∞
EF

(E − EF )f(E)D(E)dE

=

∫ EF

0

D(E)(1− f(E))(EF − E)dE +

∫ ∞
EF

(E − EF )f(E)D(E)dE (5)
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The first integral represents the energy needed to bring electrons with energy
E < EF up to the Fermi energy, and the second integral represents the energy
needed to bring electrons with energy E = EF up to an energy E > EF .

To find the electron heat capacity, we simply differentiate ∆U with respect to
temperature T (noting that f(E) is the only temperature dependent quantity):

Cel =
∂(∆U)

∂T
=

∫ ∞
0

(E − EF )
df

dT
D(E)dE (6)

At temperatures of interest for metals
(
T < .01EF

kB

)
, it is a good approximation

to take µ = EF , which gives the derivative:

df

dT
=
E − EF

kBT 2

e
E−EF
kBT(

e
E−EF
kBT + 1

)2 (7)

it is also a good approximation to evaluate D(E) at EF and bring it outside the
integral. Doing so and defining x = E−EF

kBT :

Cel ≈ k2BTD(EF )

∫ ∞
− EF

kBT

x2
ex

(ex + 1)2
dx (8)

Since at low temperatures the integrand is negligible at the lower bound − EF

kBT ,
we can replace the lower bound with −∞ to give the integral a simple value:∫ ∞

−∞
x2

ex

(ex + 1)2
=
π2

3
(9)

The heat capacity thus becomes:

Cel ≈
π2

3
D(EF )k2BT

=
π2

2
NkB

T

TF
(10)

where we recall TF = EF

kB
is the Fermi temperature.
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