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We now apply quantum mechanics for the first time. Since we are con-
cerned with non-relativistic particles, we use the time independent Schrodinger
equation with zero potential (V (x, y, z) = 0):
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ψ(x, y, z) = Eψ(x, y, z) (1)

Since we will be examining the general properties of electrons in metals, the
shape of our metal is not important (as long as it’s big). We use a cube of side
length L for convenience. As usual, we need boundary conditions to be able
to solve (1). These boundary conditions must mean the electron is confined to
our metal cube, and cannot affect the bulk properties of the metal (away from
the surface). One possibility would be to have the wavefunction go to zero at
the cube surface. This is not a good choice however, since this method gives
standing wave solutions that aren’t suitable for analyzing the motion of the
electrons. A better choice is the Born-von Karman boundary conditions
(a.k.a. periodic boundary conditions), which require:

ψ(x+ L, y, z) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x, y, z + L) = ψ(x, y, z) (2)

In a way, we have removed the effect of the surface all together, since an electron
exiting one face will essentially enter from the opposite face. This satisfies both
conditions that our boundary conditions were supposed to satisfy. A solution
to the Schrodinger equation that can satisfy these boundary conditions is the
well known plane wave:

ψk(r) =
1√
V
eik·r (3)

with energy:

E(k) =
~2k2

2m
(4)

Recalling the momentum operator p̂ = i~∇, we find this solution is a momentum
eigenstate:

p̂ψk(r) = ~k
1√
V
eik·r (5)

with momentum eigenvalue:
p = ~k (6)
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We now examine the effect of the boundary conditions on the wavefunction.
Plugging ψk(r) into the boundary conditions:

1√
V
ei(kxx+kyy+kzz) =

1√
V
ei(kx(x+L)+kyy+kzz)

=
1√
V
ei(kxx+ky(y+L)+kzz)

=
1√
V
ei(kxx+kyy+kz(z+L)) (7)

This gives the condition:

1 = eikxL = eikyL = eikzL (8)

We have thus quantized the wavevector components by:

kx =
2nxπ

L
ky =

2nyπ

L
kz =

2nzπ

L
(9)

where nx, ny, nz are any integers. If we imagine every possible k vector as a point
in k-space (kx, ky, kz), we will obtain a grid of points with spacing ∆k = 2π

L .

In k-space, each possible k vector thus occupies a volume
(
2π
L

)3
.

We now consider N electrons in the metal volume V = L3. Because of the Pauli
exclusion principle for fermions, no two electrons can occupy the same quantum
state at the same time. We must remember that electrons have an intrinsic
spin (up or down). Two electrons can thus occupy each value of k = (kx, ky, kz)

simultaneously, resulting in 2
(
L
2π

)3
modes per unit k-space volume. At absolute

zero temperature, all N electrons will fill the k states starting from the lowest
energy. Since energy is proportional to k2, they will fill states from the origin
outwards, and for large N the filled states will resemble a sphere in k-space. For
a sphere of radius k0, the number of states N the sphere will enclose is:

N = 2

(
L

2π

)3
4

3
πk30 =

V

3π2
k30 (10)

For N electrons, the modes will occupy a sphere in k-space with radius kF :

N =
V

3π2
k3F → kF =

(
3π2N

V

) 1
3

(11)

We call kF the Fermi wavevector, and the surface of this sphere is called the
Fermi surface. We can also define the Fermi energy EF , Fermi momentum
pF , Fermi velocity vF , and Fermi temperature TF :

EF =
~2k2F
2m

=
~2

2m
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) 2
3
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vF =
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m

=
~
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) 2
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TF =
EF
kB

=
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) 2
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(13)
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We can also generalize these Fermi quantities to 2D and 1D metals as well. In
2D, k-space will be two dimensional as well, with the same spacing between k

states ∆k = 2π
L . With 2

(
L
2π

)2
modes per unit k-space area, the N occupied

modes at absolute zero will resemble a circle of radius kF :

N = 2

(
L

2π

)2

πk2F → kF =

√
2Nπ

A
(14)

with the associated Fermi energy, Fermi momentum, Fermi velocity, and Fermi
temperature:

EF =
~2k2F
2m

=
~2Nπ
Am

pF = ~kF = ~
√

2Nπ

A
(15)

vF =
pF
m

=
~
m

√
2Nπ

A
TF =

EF
kB

=
~2Nπ
AmkB

(16)

In 1D, we again have the same k state spacing ∆k = 2π
L . N electrons will thus

occupy N k states, which will cover a k length:

k0 =
1

2
N

2π

L
(17)

where the factor of 1
2 comes from the spin degeneracy. Since the k states can

take on negative values of k and fill from the origin outwards, we divide k0 by
two to find the maximum magnitude kF :

kF =
k0
2

=
Nπ

2L
(18)

The other Fermi quantities are thus:

EF =
~2k2F
2m

=
~2N2π2

8mL2
pF = ~kF =

~Nπ
2L

(19)

vF =
pF
m

=
~Nπ
2Lm

TF =
EF
kB

=
~2N2π2

8mL2kB
(20)
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