Formation of Rainbows

By: Albert Liu

We have the following diagram of light entering a raindrop:

We first write Snell's law for the incident beam:

$$
\begin{equation*}
\sin \left(\theta_{i}\right)=n \sin \left(\theta_{t}\right) \tag{1}
\end{equation*}
$$

We then note that the length d is simply the radius of the drop $r: d=r$. The law of sines thus gives:

$$
\begin{equation*}
\frac{r}{\sin (a)}=\frac{r}{\sin \left(\theta_{t}\right)} \rightarrow a=\theta_{t} \tag{2}
\end{equation*}
$$

From $a=\theta_{t}$ we get $\gamma=180-2 \theta_{t}$. This also gives $b=\theta_{t}$ from the law of reflection. From inspection, $c=r$ so the law of sines in the bottom triangle gives:

$$
\begin{equation*}
\frac{r}{\sin \left(\theta_{t}\right)}=\frac{r}{\sin (f)} \rightarrow f=\theta_{t} \tag{3}
\end{equation*}
$$

Since the sum of all angles in a triangle equals 180°, we get $e=180^{\circ}-2 \theta_{t}$. Also, $g=90^{\circ}-\theta_{i}$ so $h=180-90^{\circ}-g=\theta_{i}$. We thus get β :

$$
\begin{align*}
\beta=360^{\circ}-h-\gamma-e & =360^{\circ}-\theta_{i}-180^{\circ}+2 \theta_{t}-180^{\circ}+2 \theta_{t} \\
& =4 \theta_{t}-\theta_{i} \tag{4}
\end{align*}
$$

To find ϕ, we write Snell's law:

$$
\begin{align*}
& n \sin \left(f=\theta_{t}\right)=\sin (\phi) \\
& \rightarrow \sin \left(\theta_{i}\right)=\sin (\phi) \\
& \rightarrow \phi=\theta_{i} \tag{5}
\end{align*}
$$

From inspection we note that $\beta=\alpha+\phi$. We thus find:

$$
\begin{align*}
\alpha & =\beta-\phi \\
& =4 \theta_{t}-2 \theta_{i} \tag{6}
\end{align*}
$$

We now note:

$$
\begin{align*}
& h=r \sin \left(\theta_{i}\right) \\
& \rightarrow \theta_{i}=\sin ^{-1}\left(\frac{h}{r}\right) \tag{7}
\end{align*}
$$

Then using $\theta_{i}=\sin ^{-1}\left(n \sin \left(\theta_{t}\right)\right)$:

$$
\begin{align*}
& h=r \sin \left(\theta_{i}\right) \\
& \rightarrow h=r n \sin \left(\theta_{t}\right) \\
& \rightarrow \theta_{t}=\sin ^{-1}\left(\frac{h}{r n}\right) \tag{8}
\end{align*}
$$

Plugging in these expressions for θ_{i} and θ_{t} gives:

$$
\begin{equation*}
\alpha=4 \sin ^{-1}\left(\frac{h}{n r}\right)-2 \sin ^{-1}\left(\frac{h}{r}\right) \tag{9}
\end{equation*}
$$

From the graph of $\sin ^{-1}(x)$:

we can see that increasing n results in decreasing α, and vice versa.

Examining the index of refraction for the common colors:

- Red: $\mathrm{n}=1.325$
- Orange: $\mathrm{n}=1.330$
- Green: $\mathrm{n}=1.335$
- Blue: $\mathrm{n}=1.340$
we see that the exit angle of red light is the greatest, while the exit angle of blue light is the smallest. Because red light reaches our eyes at a steeper angle than blue light, we will see the red light from higher raindrops and the blue light from lower raindrops. A pictorial representation is as follows:

