Moment of Inertia



next up previous
Next: The Parallel Axis Up: Physics 125Fall Previous: Angular Velocity and

Moment of Inertia

The total of an object is the sum of the of each piece and is separated into rotational and translational . We will first consider an object with no translational . The rotational is then the total given by adding up for each little piece of mass .

The quantity

is characteristic of the mass distribution and is a measure of the rotational inertia. It is called the moment of inertia,

The rotational

of an object is

Which is analagous to translational

.

The moment of inertia of an object depends on its mass, size, and shape.

increases as the mass is more concentrated toward the outside of the object. Thus objects of equal masses and even equal radii can have different moments of inertia. For a thin ring,

, and for a disk,

.

Integral calculus can be used to find the moment of inertia of many objects. The table below provides some results for objects of uniform density.

The mass of the object is

And the center of mass position is given by

The distribution of mass of an object is partly characterized by these so called moments:

,

, and

.

Fig 3 Moments of inertia for objects of several shapes calculated about a specific axis. In all cases, the mass of the object is





Scott D. Dexter
Tue Dec 5 15:33:45 EST 1995