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Structure, Mechanics and Failure
of Stochastic Fibrous Networks:
Part I—Microscale
Considerations
Applications for porous fibrous materials range from electrochemical substrates to
reinforcement in polymeric composite materials. The details of local load transfer
studied in a class of cost-effective, stochastic fibrous networks used in battery ap
tions, which form the substrate for a composite electrode. The connectivity of thes
terials is quantitatively related to modulus and strength, and detailed results of diffe
simulations approaches in approximating material construction are discussed. In P
we discuss microscale assumptions, including beam type, nodal connections and e
lence of models to more physically realistic models. Simulation of large network
computationally intensive, and show low-strain, nonlinear behavior even when comp
of elastic elements when failure criteria (here, strength-of-materials) are applied to
duce sequential rupture of beams and nodes. Strategies for effective simulation of
materials requires detailed analysis of the simplest assumptions which can be made
microscale which produce acceptably realistic response. We show that simple E
Bernoulli beam elements can be used to effectively model such materials, even
segment lengths in a network are very small. Moreover, connections comprised of s
torsion springs produce realistic behavior, and can mimic more realistic junctures
adaptation of the linear solution to a compliant zone model. In Part II of this work,
demonstrate the effect of model selection on full network behavior, and also discuss
of connectivity at the scale of the porous material rather than element-by-element.
work points toward use of simple constructions to model complex behavior, and
ultimately provide insight into modeling of a large class of porous materials.
@S0094-4289~00!01704-7#
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1 Introduction
Porous nonwoven fibrous materials comprise a promising c

of materials for use as electrochemical substrates in at least
battery technologies: Ni/MH~nickel-metal hydride! and Li-ion
~lithium ion! cells. High energy densities demand low-density b
tery materials, and thus porous substrates with low volume f
tion of conductive mass~as low as 3 percent for positive plat
substrates in Ni/MH cells, for example, such as that shown in F
1! are desirable. For such highly porous structures, it is critica
determine whether a given morphology and density of partic
creates a ‘‘percolated’’ network, i.e., a network in which there
continuous, domain-spanning~edge-to-edge! paths of material. If
there are no, or few, such paths, conductivity is negligible
measured across the electrode. The details of load transfer in
materials are thus also of central interest, since local failure p
nomena initiated by mechanical loads induced by electrochem
cycling can reduce connectivity in these conductive webs,
thus critically reduce transport properties. If conductivity in su
strate materials for battery electrodes is not sufficiently high,
battery will fail to discharge to an acceptable capacity, or f
entirely @1#. Thus, the present interest~including @2#! is in under-
standing micromechanical failure mechanisms, in order to de
superior electrochemical materials, and also satisfactorily pre
lifetime and degradation.

Previous work on the mechanics of similar point-bonded
brous networks can be roughly divided into four main areas@3#. 1!

Contributed by the Materials Division for publication in the JOURNAL OF ENGI-
NEERING MATERIALS AND TECHNOLOGY. Manuscript received by the Material
Division May 26, 2000; revised manuscript received May 30, 2000. Guest Ed
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continuum approximations of behavior using unit cell approac
@4,5#, including work on development of other applications f
solutions of Laplace’s equation, e.g., conductivity of porous m
dia or gasses~with much of the classic work summarized in th
excellent review by Meredith and Tobias@6#!; 2! micromechanical
models employing averaging assumptions to examine fibrous
works @7–11# ~with affine deformations of unit cells of known
orientation relative to the direction of applied load!; 3! numerical
models employing various network generation techniques, to u
mately gain a continuum description of behavior@12–16#; and 4!
purely statistical approaches, involving tracking progressive lo
failures in regular periodic arrays with statistically-assigned e
ment properties@17#.

The present general approach for generation of model mi
structures has been described in detail previously@1,3,4,18–20#.
Work-to-date has been guided by mechanical and transport p
erties along with detailed image analysis of battery materials.
distinguishing features of the work compared with other efforts
nonwovens is that microstructures have been characterized q
titatively and statistically. Also, specific, morphology-driven fa
ure mechanisms observed in battery substrates have been inc
rated directly into numerical models@19,21#, with success in
predicting both trends in behavior and quantitative propert
These studies@19,20# have shown that the details of load transf
are key in predicting material properties. In NiMH cells, for e
ample, the strength and stiffness of fiber-fiber bonds can cha
signficantly due to electrodeposition during electrochemical re
tions. These effects must be modeled in order to design supe
materials.

Here, we focus on these details of load transfer and the dam
tolerance of networks, expanding on development of an ea

tor:
2000 by ASME Transactions of the ASME
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Fig. 1 SEM image „50Ã… of an NiMH positive plate substrate, produced by Na-
tional Standard „Fibrex …, containing 50 Õ50 fiber Õpowder by weight ratio, 97 per-
cent pure nickel by mass; calculated porosity: 82 percent; fiber diameter: 30 mm;
staple lengths: 0.64–1.27 cm; content
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general technique@1,3#. We also examine the effects of scale
these calculations, and present several methods for modeling
nectivity in networks. Finally, we compare these calculations w
results for real materials. The purpose of the present work is
fourfold:

1 to assess the effect of choice of beam types in models
fibers, and the effect of assumptions at fiber-fiber bonds, on
simulated overall network response;

2 to examine the effect of assumptions regarding material c
nectivity on the simulated overall network response;

3 to examine the effects of scale in simulation, especially
garding strength and damage tolerance; and

4 to assess the ability of spring-jointed models in predict
real materials response, as compared to a class of fiber-pa
networks.

Ultimately, the aim of this work is to allow design of stochas
microstructures, wherein both overall properties, and varianc
properties, can be predicted. In the present paper,
I—Microscale Considerations, we address the first two poi
namely development of appropriate elemental models for
components of the network~beams and joints, respectively!. In
the second part of this work, Part II—Simulations and Applic
tions, we describe results of simulations of large networks thu
constructed, and quantify the effects of these micromechan
assumptions on the response of larger networks.

2 Microscale Models
Briefly, the general technique for generating a network is

follows. A volume of fibers is chosen, and a number of fibe
corresponding to the chosen volume fraction~for a given domain
size! is calculated. These fibers are placed in the representa
domain according to known distributions of fiber orientations,
ameters, and lengths. Periodic boundary conditions are then
forced, and non-load bearing fiber ‘‘ends’’ are removed~Fig. 2
shows this process schematically for a single fiber in a unit ce!.

Micromechanical assumptions for the elements and node
such networks are required in order to predict mechanical pro
ties. Several techniques have been developed as part of this w
and are described in the following sections. In Part II of this wo
we discuss the effect of each assumption on simulations for
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diction of properties of real substrate materials for NiMH cel
and point out certain assumptions which are robust, and requ
ments for elimination of scale effects in simulation of real ma
rial response.

2.1 Substrate Microstructures: Observations. Real fi-
brous networks such as those studied by the authors gene
contain fibers which deviate from the regular arrays describ
they are imperfectly bonded, nonstraight, and often mixed w
other particles. In battery materials, several phases of var
shape and size often comprise an electrode, with each phase
ing different functionality~electrochemical reactant, substrate f
provision of active surface area, conductive element, mechan
strengthener or stiffener, etc.!. Here, we examine the mechanics
the fibrous network only, since for many practical battery mate
als, the particle content is below the percolation point for sphe
so that the only percolated phase is the fibrous phase. Percol
is achieved at only 4–5 percent volume fraction for netwo
comprised of fibers with aspect ratios of;100 ~per Cheng and
Sastry@18#, validating earlier work by Kirkpatrick@22#!. More-

Fig. 2 Network generation approach, with a single fiber shown
for simplicity. Fiber is placed in the unit cell „a… whereupon
periodic boundary conditions are applied, effectively ‘‘wrap-
ping’’ overlapping ends back into unit cell „b…, and nondomain-
spanning segments are removed, as they do not bear network
loads „c…. Notation for a two-element case, with fixed end. Lo-
cation and numbering of nodes used in calculating maximum
stress are shown below the two-beam schematic.
OCTOBER 2000, Vol. 122 Õ 451
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over, it is the fiber phase which is commonly used to provide b
conductivity and mechanical stiffness and strength.

In a network, segments of various length are formed. If
assume that these segments, upon material processing, beha
dependently of one another; i.e., the staple fiber is replaced by
segment as the elemental unit, these differences in length ne
sitate study of internal assumptions of load in the beams.

2.2 Beam Assumptions. The beam theory is generally ap
plicable for beams of aspect ratio greater than around 5–10. H
ever, in generation of even moderately low volume networks
large portion of small segments arise~see particularly Part II of
this work!. As the beam aspect ratio is reduced, consideration
deformation due to transverse shear is required~Timoshenko
beam theory! since the simple Euler-Bernoulli beam theory ove
estimates stiffness for a single beam.

In fibrous networks, however, the stiffness of an array of bea
is limited by the relative compliance afforded by even rigid bon
between beams. Several examples in the following sections i
trate the small differences in such arrays for Timoshenko ve
Euler beams, with notation for the two-beam problem shown
Fig. 3. Generally, we derive the forces and displacements
network as follows, with axial forceFi , transverse forceSi , and
bending momentQi . A is the cross-section area, andI is moment
of inertia. Two cases are outlined, for the Euler-Bernoulli a
Timoshenko-type beam assemblies with rigid bonds. The pote
energy,p, for an Euler-Bernoulli beam assembly can be writt
@23,24# as

p5
1

2 E0

LFEAS du

dxD
2

1EIS d2v
dx2D 2Gdx2F1u~0!2F2u~L !

(1)

2S1v~0!2S2v~L !2Q1

dv~0!

dx
2Q2

dv~L !

dx

The variational method yields the governing equations

EA
d2u

dx2 50
(2)

EI
d4v
dx4 50

For rigid connections between beams, we have the boundary
ditions

at x50→5
EAS du

dxD52F1 or u5constant

EIS d2v
dx2D52Q1 or

dv
dx

5constant

EIS d3v
dx3D52S1 or v5constant

(3)

at x5L→5
EA

du

dx
5F2 or u5constant

EIS d2v
dx2D5Q2 or

dv
dx

5constant

EIS d3v
dx3D5S1 or v5constant

For Timoshenko beams joined by rigid connections, we rew
the potential energy of the assembly as

p5E
0

LH FEAS du

dxD
2G1FEIS dC

dx D 2G1GAKsS C1
dv
dxD

2J
(4)

2F1u~0!2F2u~L !2S1v~0!2S2v~L !2Q1~C!x50

2Q2~C!x5L
452 Õ Vol. 122, OCTOBER 2000
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whereKs is the shear correction factor, andC the rotation func-
tion about they-axis. The shear correction coefficient accounts f
the difference in the assumed constant versus the actual sta
shear stress in this theory and the parabolic variation of the act
through the thickness. It can be computed as@24#

Ks5
V2

A*ta
2dA

5
As

A
(5)

whereV is the shear force,ta is the actual shear stress in the cro
section, andAs is the corresponding shear area. For the circu
cross-sections of interest, we use a shear correction factor of
proximately

Ks5
3~11n!d2

8L2 (6)

which agrees closely with the implementation in ABAQUS us
in Part II of this work to solve for internal loads and displac
ments in networks similarly constructed. Using the variation
method as before, the governing equations are obtained as

EA
d2u

dx2 50

EI
d2C

dx2 2GAKsS C1
dv
dxD50 (7)

GAKs
d

dx S C1
dv
dxD50

Boundary conditions are analogous to those for the Eu
Bernoulli beam model, as

at x50→5
EAS du

dxD52F1 or u5constant

EIS dC

dx D52Q1 or C5constant

GAKsS C1
dv
dxD52S1 or v5constant

(8)

at x5L→5
EA

du

dx
5F2 or u5constant

EIS dC

dx D5Q2 or C5constant

GAKsS C1
dv
dxD5S2 or v5constant

Solution of these expressions~performed here in MAPLE v.6.0!
provided the results of Figs. 4 and 5. In these plots, we requi

l 11 l 251 (9)

Fig. 3 Two-beam network analyses notation
Transactions of the ASME



Journal of Engineerin
Fig. 4 Two-beam structural moduli, with notation of Fig. 3, for aÄ30, 90 and 150
deg, plotted for varying beam lengths as log „l1 Õl2…. Nodes between segments are
rigid. Euler-Bernoulli and Timoshenko beam results are compared in each case;
two-beam assemblies are comprised of segments of diameter dÄ0.2.
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and defined

Eeffective5F dx

l 1 cosg11 l 2 cosg2
Gsx (10)

with maximum stress defined as the combined stress du
tension/compression and bending in the assembly, occuring a
of the nodal points shown in Fig. 3. Both plots are for a be
aspect ratio of (l 11 l 2)/dsegment55 ~i.e., dsegments50.2!, for which
the Euler-Bernoulli and Timoshenko beams would be expecte
differ in prediction of loads/displacements. These simple
amples illustrate that for rigidly connected beams, differences
only significant when one of the two segments is very short. D
ferences in effective moduli for the two beam types differ sign
g Materials and Technology
to
one
m

to
x-
are
if-
fi-

cantly only when one segment is approximately one-half
length of the other, i.e. the shorter segment is of aspect ratio
approximately 1–2. Thus, for the range of applicability of bea
theory, it probably is of marginal benefit even for rigidly con
nected beam assemblies, to better estimate their transverse
stresses. In Part II, we describe the occurrence and loads in
short segment-beams, as they affect network properties.

2.3 Node Assumptions: Torsion Springs. In our earlier
work, we described a technique for modeling network respo
using segments joined by torsion springs@18,19#. We repeat the
main steps here for the Euler-Bernoulli beam, and also outline
procedure for the Timoshenko beam. For the Euler-Bernoulli ca
we express the potential energy of the system as
Fig. 5 Maximum loads in two-beam assemblies, with notation of Fig. 3, for aÄ30,
90 and 150 deg, plotted for varying beam lengths as log „l1 Õl2…. Euler-Bernoulli and
Timoshenko beam results are compared in each case; two-beam assemblies are
comprised of segments of diameter dÄ0.2.
OCTOBER 2000, Vol. 122 Õ 453



p5
1

2 E0

LFEAS du

dxD
2

1EIS d2v
dx2D 2Gdx1

1

2
KF S dv

dxD
x50

2a1G2

1
1

2
KF S dv

dxD
x5L

2a2G2

2F1u~0!2F2u~L !2S1v~0!

2S2v~L !2Q1

dv~0!

dx
2Q2

dv~L !

dx
(11)
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and the governing equations are obtained as

EA
d2u

dx2 50
(12)

EI
d4v
dx4 50

Application of boundary conditions
at x50→5
EAS du

dxD52F1 or u5constant

EIS d2v
dx2D2KF S dv

dxD
x50

2a1G52Q1 or
dv
dx

5constant

EIS d3v
dx3D5S1 or v5constant

(13)

at x5L→5
EA

du

dx
5F2 or u5constant

EIS d2v
dx2D1KF S dv

dxD
x5L

2a2G5Q2 or
dv
dx

5constant

EIS d3v
dx3D52S2 or v5constant
ns
allows solution for all internal loads and displacements.
For torsion-spring bonded Timoshenko beams, we have the

tential energy

p5H E
0

LFEAS du

dxD
2G1FEIS dC

dx D 2G1GAKsS C1
dv
dxD

2J dx

1
1

2
K1S dv

dx
x50

1Cx502a1D 1
1

2
K1S dv

dx
1C2a2D

x5L

2F1u~0!2F2u~L !2S1u~0!2S2u~L !2Q1C~0!2Q2C~L !

(14)
po-
which, by the variational method, yields the governing equatio

EA
d2u

dx2 50

EI
d2C

dx2 2GAKsS C1
dv
dxD50 (15)

GAKs
d

dx S C1
dv
dxD50

Application of boundary conditions
at x50→5
EAS du

dxD52F1 or u5constant

EIS dC

dx D2K1S dv
dx

1C2a1D5Q1 or C5constant

GAKsS C1
dv
dxD52S1 or v5constant

(16)

at x5L→5
EA

du

dx
5F2 or u5constant

EIS dC

dx D1K2S dv
dx

1C2a2D5Q2 or C5constant

GAKsS C1
dv
dxD5S2 or v5constant
Transactions of the ASME
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Fig. 6 Two-beam structural moduli, with notation of Fig. 3, for aÄ30, aÄ90 and
aÄ150 deg, plotted for varying beam lengths as log „l1 Õl2…. Segments are joined by
torsion springs, „a… for normalized spring constants 1.0 and 0.1, and „b… for nor-
malized spring constants 0.01, 0.001, and 0.0001. Euler-Bernoulli and Timoshenko
beam results are compared in each case; two-beam assemblies are comprised of
segments of diameter dÄ0.2.
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allows solution for all internal loads and displacements.
Solution of these expressions~performed here in MAPLEv.6.0

for the Euler-Bernoulli beam and in ABAQUS for the Timos
enko beam! provided the results of Figs. 6 and 7. In both plots, t
torsion spring constant is normalized as

K̄5
Kl

EI
(17)

whereK is the torsion spring constant,l is the total beam length
( l 5 l 11 l 2), and E and I are the usual modulus and moment
inertia. Both plots are again for a beam aspect ratio ofl 1
1 l 2)/dsegment55 ~i.e.,dsegments50.2!. The compliance afforded by
the torsion springs at the joints~which model imperfect bonds!
reduces dramatically the importance of transverse shear in ca
lation of the stiffness and maximum stress in the assembly.
shown in Figs. 6 and 7 for effective modulus and maximum str
in such arrays, the dominant effect is the stiffness of the tors
spring constant, rather than the assumption of beam type. Cle
g Materials and Technology
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for more compliant torsion springs~i.e., normalized values of ap
proximately 0.01 or less! the distinction between Euler-Bernoul
and Timoshenko beams is largely irrelevant.

By placement of the torsion springs at every segment, we
glect the higher stiffness afforded by fibers being continuo
through intersections, e.g., we view a two-fiber intersection a
four-segment intersection, with attendantly greater overall com
ance. The effect of this assumption is described presently in
II of this work. However, the motivation for selection of the to
sion spring to represent the intersecting region properties co
from an assumption about microstructure in the region aroun
fiber-fiber bond. These bonds are necessarily imperfect. Inclu
of a torsion spring allows some rotation of the fibers with resp
to one another. Physically, this is not entirely realistic, though i
equivalent to a more realistic construct, described next.

2.4 Torsion SpringsÕCompliant Zone Equivalence. In the
vicinity of a fiber-fiber intersection in substrate materials, we o
serve 1! incomplete intersection of the two fibers, i.e., fibers a
OCTOBER 2000, Vol. 122 Õ 455
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Fig. 7 Maximum loads in two-beam assemblies, with notation of Fig. 3, for aÄ30,
aÄ90 and aÄ150 deg, plotted for varying beam lengths as log „l1 Õl2…. Segments are
joined by torsion springs, „a… for normalized spring constant 1.0 and 0.1, and „b… for
normalized spring constant 0.01, 0.001, and 0.0001. Euler-Bernoulli and Timosh-
enko beam results are compared in each case; two-beam assemblies are comprised
of segments of diameter dÄ0.2.
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not fully ‘‘melted’’ into one another, and in the extreme, a
bonded only at a point of tangency; and 2! a cluster of particles is
often present at the intersection, so that the fibers themselve
not in contact, but they are joined by the particles~as shown
schematically in Fig. 8~a!!. The effects of the former observatio
are discussed in the Conclusions/Future Work section, as
may only be properly analyzed by a fully 3D analysis. The eff
of the second phenomenon, however, can be determined by
analysis as shown in Fig. 8~b!, if the particle density of the bond
is known or can be estimated from micrography or experime
We can assume that this structure, rather than being comprise
two beams of common modulus, is instead an assembly of
multiphase beams, as in Fig. 8~a!. We develop this model assum
ing that the regions close to the rigid bond are rather more c
pliant than the remainder of the beam, and denote the model a
‘‘compliant zone model.’’ However, the same arguments wo
apply for this simple linear system if for some reason the bo
region were stiffened as compared to the beams.
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Equivalence between the compliant zone model and the tor
spring model is shown in the following steps, with the torsi
spring model shown in Fig. 9. The illustration of the two-bea
models’ equivalence can be easily extended to networks: the
beam cases are shown for simplicity. Two methods are shown
finding an equivalent compliant zone model~Fig. 8~b!! which has
the same response to a given set of loads as a torsion spring m
~Fig. 9! with a finite value of normalized spring constantK.

The beams in the compliant zone model~Fig. 8~b!! are of uni-
form cross-section. For the beamAB, the segment fromA to D
has elastic modulusE1 , while the remaining sectionDB of length
b2 has modulusE2 . The assembly is symmetric, so that for th
beamBC, segmentBE has modulusE2 , and sectionFC has
modulus E1 . The beams are of equal, uniform cross-sectio
Since the model is symmetric,g15g2 . The symbolg is used in
the equations to denote this angle.

The potential energy of the system in Fig. 8~b! can be written as
Transactions of the ASME
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U5E
0

b12b2 FAD
2

2E1A
1

MAD
2

2E1I
dj11E

0

b2 FDB
2

2E2A
1

MDB
2

2E2I
dj2

1E
0

b2 FBE
2

2E2A
1

MBE
2

2E2I
dj31E

0

b12b2 FEC
2

2E1A
1

MEC
2

2E1I
dj4

(18)

Fig. 8 A reduction of a physically realistic bond between fi-
bers in a fiber Õparticle network to a 2D beam assembly „a…, and
notation for the two-beam assembly of rigidly joined beams,
with each beam having a ‘‘compliant zone’’ of lengths b 2 „b…
Journal of Engineering Materials and Technology
with A, I, F, andM denoting the usual area, moment of inert
force and moment.

The torsion spring model of Fig. 9 is comprised of two bea
of length b1 and Young’s modulus,E with a torsion spring of
spring constantK at the jointB. The cross-sections of the beam
in this model are the same as that of the compliant zone mo
Again g is used in place ofg1 andg2 . The potential energy of the
torsion spring assembly~Fig. 9! can be written as

U5E
0

b1 FAB
2

2EA
1

MAB
2

2EI
dj11E

0

b1 FBC
2

2EA
1

MBC
2

2EI
dj21

MAB~0!2

2K

(19)

We apply a virtual displacement to the beam assembly,
calculate the loads~and thus effective structural modulus an
maximum internal stress! as follows. For both systems, letX, Y,
and Q denote the horizontal, vertical and angular displaceme
respectively at pointC. For either system,X5]U/]Fx , Y
5]U/]Fy , Q5]U/]M . Subscripts 1 and 2 denote the mod
parameters, with 1 being the compliant zone model and 2
torsion spring model.

We constrain our systems so thatY50 and Q50. For each
system we can obtain expressions for the values ofFx , Fy , andM
that which produce a displacementX in the horizontal direction,
as

Fig. 9 Two-beam assembly of beams joined by a torsion
spring at B
Fx15
6E1E2IA~E1b21E2~b12b2!!X

12I cos~g!2~E2~b12b2!1b2E1!21A sin~g!2~E22E1!@E2~b12b2!42E1L2
4#1AE1 sin~g!2E2b1

4 (20)

Fy150 (21)

M15
3E1E2IA sin~g!@E2~b12b2!21E1L2~2b12b2!#X

12I cos~g!2~E2~b12b2!1b2E1!21A sin~g!2~E22E1!@E2~b12b2!42E1b2
4#1AE1 sin~g!2E2b1

4 (22)

Fx25
2EIA~2b1K1EI !X

b1@~b1
3AK sin~g!2112b1IK cos~g!2!12b1

2EIA sin~g!216EI2 cos~g!2#
(23)

Fy250 (24)

M25
3~EI1b1K !sin~g!2AEIX

~b1
3AK sin~g!2112b1IK cos~g!2!12b1

2EIA sin~g!216EI2 cos~g!2 (25)

For an equivalent system, we have
OCTOBER 2000, Vol. 122 Õ 457



Fx15Fx2 , Fy15Fy2 , M15M2 (26)

Substituting Eq.~20!–Eq. ~25! in Eq. ~26! and solving simultaneously gives

E15
2E~b12b2!@ tan~g!2A@E2I 2b1b22K2b1

422EKb1
2I ~b12b2!#212IKL ~EI1Kb1!23E2I 3#

~b2IE12b2b1K22Kb1
2!~6EI212EA tan~g!2b1

2I 112b1KI 1AK tan~g!2b1
3!

(27)

E25
22Eb2@ tan~g!2A@E2I 2b1b22K2b1

422EKb1
2I ~b12b2!#212IKb1~EI1Kb1!23E2I 3#

~b2IE1Ib1E12b1b2K !~6EI212EA tan~g!2b1
2I 112b1KI 1AK tan~g!2b1

3!
(28)
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For all positive values ofE, I, A, K, andb1 , with a,180 deg,Fx2
andM2 are positive.Fx1 andM1 must therefore be positive whe
Eq. ~26! holds. Enforcing this condition results in the validit
condition that

Kb1

EI
.

b2

2~b12b2!
(29)

which is equivalent to requiring that bothE1 andE2 are positive.
Figure 10 is a graphical representation of these results for
specific caseb25b1/10. The modulus of the compliant zone in th
beam on which the displacement is applied,E2 , is singular for
this case asK→0.

3 Discussion
Porous networks comprised of elastic elements exhibit inela

response at low strain, in addition to being susceptible to los
percolation~and thus loss of meaningful conductivity! in the pres-
ence of even moderately small damage. The present authors
considered various models for both elements and connectivit
this paper, and in previous work. Euler-Bernoulli beams sh
satisfactory agreement with Timoshenko beams for rigid
connected two-beam models examined here, with aspect ratio
low as 5. Both structural moduli and maximum stresses were
amined, to allow investigation of element choice on stiffness a
probable damage tolerance~Figs. 4 and 5!.

Generally, it is recommended that deformation due to tra
verse shear be considered~i.e., Timoshenko beams be used! for
beams of aspect ratios of around 5–10. Beam theory itself is o
considered valid for beams of minimum aspect ratio;10. That
these models agree is not entirely a satisfactory reason for a
doning greater detail in models of the network elements; it o
serves to illustrate that consideration of transverse shear defo
tion under these circumstances does not offer much insight
Part II of this work, we underscore the recommendation that s

Fig. 10 Results for the virtual displacement method. Plots of
moduli in compliant zones 1 and 2 versus normalized torsion
spring constant, for the specific case of b2Äb1Õ10. The solu-
tion for E2 is singular as K\0 „load applied to segment 2 ….
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the
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have
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nly
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ma-
. In
im-

pler Euler-Bernoulli beam elements be used by examining
internal loads borne by these short elements in larger networ

As expected, significant joint compliance only makes more
tailed consideration of internal beam stresses less importan
much of the deformation in the assembly results from deforma
at the torsion spring joint. Figures 6 and 7 illustrate this point
a wide range of~normalized! torsion spring constants, with eve
moderately high torsion spring constants, effectively eliminat
the differences between the Euler-Bernoulli and Timoshenko t
beam assemblies.

Use of the torsion spring constant model provides a numeric
simple adaptation to a rigidly-connected beam network to acco
for imperfect bonds. This is particularly important for fibe
particle networks, in which the particles may not themselves fo
a percolating, interconnected network, but nonetheless pro
porous interconnects between fibers. A demonstration of how
linear model might be easily adapted to account for such conn
tions, the compliant zone model, was presented here. These t
of connections have been evident in many of the fiber/part
networks examined by the present authors, but such connec
have been rather challenging to quantify in a satisfactorily sta
tically representative way. Undoubtedly, with improvements
computational speed and in image analysis, these will shortly
within reach. Adaptation of the linear model can be made to s
multiphase networks as needed.

4 ConclusionsÕFuture Work
We conclude that the simple beam approximation has a g

basis when degenerate networks~two-beam! are considered. We
illustrate the use of a linear torsion spring between beams a
approach to assigning a linear deformability to the intersecti
and show its correspondence to one more physically realistic
cumstance. Results here are tested in Part II of this work for la
networks, and the effects of these various simple assumption
material behavior is assessed. These illustrations show howe
that more detailed assumptions in the beam theory framework
not merited.

In analysis of broad classes of particle/fiber networks, it
likely that consideration of 3D effects would be required, both
morphology ~in terms of how non-percolated impenetratin
phases might effect connectivity in a percolated phase, as in
particle/fiber networks motivating the present investigation!. It
also seems likely that small scale 3D analyses might yield sign
cant insight such that a satisfactory 2D simulation approach m
be designed. For a 2D or a 3D analysis, intersection of two fib
even only at a single point of tangency results in an identi
effective, or structural modulus, for the assembly due to equi
rium considerations. In the 3D analysis of such an ‘‘imperfec
bond, we find, of course, that the maximum stress in the assem
is considerably higher in the case of less impenetration of fiber
a bond, due to the stress riser of the saddle-shaped intersec
The stress singularity arising at such interconnects, and meth
for their analysis, are reserved for future work.
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Nomenclature

A 5 cross-sectional area
As 5 shear area
b1 5 total length of each beam in compliant zon

model ~Fig. 8~b!!
b2 5 length of ‘‘compliant zone’’~Fig. 8~b!!

dsegment 5 diameter of a segment in a beam network
E 5 Young’s modulus

E1 , E2 5 Young’s moduli of segments of compliant
zone model~Fig. 8~b!!

Eeffective 5 effective Young’s modulus of a beam
assembly

F1 , F2 5 axial force~subscript denotes end at which
is applied!

FAB , FBC 5 axial forces in membersAB andBC of tor-
sion spring model~Fig. 9!

FAD , FDB 5 axial forces in membersAD andDB of
compliant zone model~Fig. 8~b!!

FBE , FEC 5 axial forces in membersBE andEC of
compliant zone model~Fig. 8~b!!

Fx1 , Fx2 5 applied force at pointC in x-direction. Sub-
script 1 denotes compliant zone model and
2, the torsion spring model~Figs. 8~b! and
9!

Fy1 , Fy2 5 applied force at pointC in y-direction. Sub-
script 1 denotes compliant zone model and
2, the torsion spring model~Figs. 8~b! and
9!

G 5 shear modulus
I 5 second moment of area

K 5 torsion spring constant
K1 , K2 5 torsion spring constant. Subscript denotes

end at which spring is located
Ks 5 shear correction factor
L 5 beam length
l c 5 length of a simulation cell size

l 1 , l 2 5 beam lengths~Fig. 3!
M1 , M2 5 applied moment at pointC. Subscript 1 de-

notes compliant zone model and 2, the tor-
sion spring model~Figs. 8~b! and 9!

MAB , MBC 5 moment in membersAB andBC of torsion
spring model~Fig. 9!

MAD , MDB 5 moment in membersAD andDB of compli-
ant zone model~Fig. 8~b!!

MBE , MEC 5 moment in membersBE andEC of compli-
ant zone model~Fig. 8~b!!

Q1 , Q2 5 bending moment~subscript denotes end at
which it is applied!

S1 , S2 5 shear force~subscript denotes end at which
it is applied!

u 5 x-direction displacement
v 5 y-direction displacement

X1 , X2 5 x-direction displacement of pointC. Sub-
script 1 denotes compliant zone model and
2, the torsion spring model~Figs. 8~b! and
9!

U 5 strain energy
V 5 shear force
Journal of Engineering Materials and Technology
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Y1 , Y2 5 y-direction displacement of pointC. Sub-
script 1 denotes compliant zone model and
2, the torsion spring model~Figs. 8~b! and
9!

a1 , a2 5 internal rotation between two beams~sub-
scripts denote end!

p 5 potential energy
C 5 rotation function about they-axis
Q 5 angular displacement of pointC. Subscript 1

denotes compliant zone model and 2, the
torsion spring model~Figs. 8~b! and 9!

j1 , j2 , j3 , j4 5 local coordinates along beam segments of
compliant zone and torsion spring models
~Figs. 8~b! and 9!

a 5 angle between beams in two-beam assemb
g1 , g2 5 angles between beams of two-beam assem

bly andx-axis
ta 5 actual shear stress
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