Structure, Mechanics and Failure
of Stochastic Fibrous Networks:
Part —Microscale
Considerations

C.W Wang Applications for porous fibrous materials range from electrochemical substrates to web

s reinforcement in polymeric composite materials. The details of local load transfer are

L. Berhan studied in a class of cost-effective, stochastic fibrous networks used in battery applica-
' tions, which form the substrate for a composite electrode. The connectivity of these ma-

A. M Sastry terials is quantitatively related to modulus and strength, and detailed results of different

simulations approaches in approximating material construction are discussed. In Part I,
we discuss microscale assumptions, including beam type, nodal connections and equiva-
lence of models to more physically realistic models. Simulation of large networks is
computationally intensive, and show low-strain, nonlinear behavior even when comprised
of elastic elements when failure criteria (here, strength-of-materials) are applied to pro-
duce sequential rupture of beams and nodes. Strategies for effective simulation of these
materials requires detailed analysis of the simplest assumptions which can be made at the
microscale which produce acceptably realistic response. We show that simple Euler-
Bernoulli beam elements can be used to effectively model such materials, even when
segment lengths in a network are very small. Moreover, connections comprised of simple
torsion springs produce realistic behavior, and can mimic more realistic junctures by
adaptation of the linear solution to a compliant zone model. In Part Il of this work, we
demonstrate the effect of model selection on full network behavior, and also discuss issues
of connectivity at the scale of the porous material rather than element-by-element. This
work points toward use of simple constructions to model complex behavior, and may
ultimately provide insight into modeling of a large class of porous materials.
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1 Introduction continuum approximations of behavior using unit cell approaches

Porous nonwoven fibrous materials comprise a promising clis4 5]’. including Work’ on dev_elopment of othe_r_appllcatlons for
; . ) sSolutions of Laplace’s equation, e.g., conductivity of porous me-
of materials for use as electrochemical substrates in at least t&uo

SR st . 1a or gasseswith much of the classic work summarized in the
battery technologies: Ni/MHnickel-metal hydridg and Li-ion xcellent review by Meredith and Tobif8]); 2) micromechanical

(lithium ion_) cells. High energy densities dema_nd low-density baﬁmdels employing averaging assumptions to examine fibrous net-
tery materials, and thus porous substrates with low volume fraw

tion of conductive mass$as low as 3 percent for positive plate orks [7-11] (with affine deformations of unit cells of known

S .~ —orientation relative to the direction of applied 10a8) numerical
substrate; in Ni/MH cells, fo‘r example, such as that .Shown. in Fi odels employing various network generation techniques, to ulti-
1) are desirable. For such highly porous structures, it is critical

determine whether a given morphology and density of particl %ately gain a continuum description of behavidg—14; and 9
creates a “percolated” network, i.e.. a network in which there a rely statistical approaches, involving tracking progressive local

continuous, domain-spannirfgdge-to-edgepaths of material. If mg%;e;régéﬁ?euéi;]pemd'C arrays with statistically-assigned ele-
there are no, or few, such paths, conductivity is negligible aS e present general approach for generation of model micro-

measured across the electrode. The details of load transfer in (he . o< has been described in detail previo{isg,4,18—20

materials are thus also of central interest, since local failure pRes . "0 - & pe o guided by mechanical and transport prop-
homena initiated by mechanical loads induced by electrochemm@ ies along with detailed image analysis of battery materials. The

cycling can reduce conneciivity in these conductive webs, arEi‘fis’[inguishing features of the work compared with other efforts in

thus critically reduce transport properties. If conduciivity in SUbﬁonwovens is that microstructures have been characterized quan-

strate materials for battery electrodes is not sufficiently high, tq?atively and statistically. Also, specific, morphology-driven fail-

giiitree?/ [V\llﬁ" 'If'?mllljsfotlilescrgsrgﬁt tiﬁtgrr;;iﬁ&fb&fipﬁcl% dg:_f re mechanisms observed in battery substrates have been incorpo-
YL ’ P 9 rated directly into numerical modelgl9,21], with success in

standing micromechanical failure mechanisms, in order to desi dicting both trends in behavior and quantitative properties.

ls_fupt)_erlor elgtzjtrochzrrll_cal materials, and also satisfactorily pred ese studiegl9,20 have shown that the details of load transfer
ietime and degradation. are key in predicting material properties. In NiMH cells, for ex-

b Previo?s V\((Ork onbthe mﬁlchg.ni.c(:js dof tsirrfﬂlar point-bonded fﬁmple, the strength and stiffness of fiber-fiber bonds can change
rous networks can be roughly divided into four main af@asl) signficantly due to electrodeposition during electrochemical reac-

tions. These effects must be modeled in order to design superior
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Fig. 1 SEM image (50X) of an NiMH positive plate substrate, produced by Na-
tional Standard (Fibrex), containing 50 /50 fiber/powder by weight ratio, 97 per-
cent pure nickel by mass; calculated porosity: 82 percent; fiber diameter: 30 mm;
staple lengths: 0.64—1.27 cm; content

general techniquél,3]. We also examine the effects of scale irdiction of properties of real substrate materials for NiMH cells,
these calculations, and present several methods for modeling cane point out certain assumptions which are robust, and require-
nectivity in networks. Finally, we compare these calculations witments for elimination of scale effects in simulation of real mate-
results for real materials. The purpose of the present work is thial response.

fourfold: . . .
2.1 Substrate Microstructures: Observations. Real fi-

1 to assess the effect of choice of beam types in models forous networks such as those studied by the authors generally
fibers, and the effect of assumptions at fiber-fiber bonds, on tbentain fibers which deviate from the regular arrays described:
simulated overall network response; they are imperfectly bonded, nonstraight, and often mixed with

2 to examine the effect of assumptions regarding material coother particles. In battery materials, several phases of various
nectivity on the simulated overall network response; shape and size often comprise an electrode, with each phase hav-

3 to examine the effects of scale in simulation, especially réng different functionality(electrochemical reactant, substrate for
garding strength and damage tolerance; and provision of active surface area, conductive element, mechanical

4 to assess the ability of spring-jointed models in predictingtrengthener or stiffener, etcHere, we examine the mechanics of
real materials response, as compared to a class of fiber-partitie fibrous network only, since for many practical battery materi-
networks. als, the particle content is below the percolation point for spheres,

properties, can be predicted. In the present paper, Paf P ; : ; ~
I—Microscale Considerations, we address the first two point%,és"y[ls]’ validating earlier work by Kirkpatrick22]). More
namely development of appropriate elemental models for the
components of the networtbeams and joints, respectivelyin

the second part of this work, Part [I—Simulations and Applice

tions, we describe results of simulations of large networks thus /
constructed, and quantify the effects of these micromechanid
assumptions on the response of larger networks. /

2 Microscale Models

Briefly, the general technique for generating a network is ¢

follows. A volume of fibers is chosen, and a number of fiber /

corresponding to the chosen volume fractifor a given domain 1 7

size) is calculated. These fibers are placed in the representat /

domain according to known distributions of fiber orientations, d (a) (b) (C)

ameters, and lengths. Periodic boundary conditions are then en- ] ) ) ]

forced, and non-load bearing fiber “ends” are remov&ily. 2 Fig.2 Network generation approach, with a single fiber shown

shows this process schematically for a single fiber in a uni].celg’rnz‘g?cplggzh dFaIlI:')yerCIOSngilt?(():r?g ;eth:p;::tj czlflfectivc(s?; X"vcgs_“pon
Micromechanical ass_ump_tions for the el_ements an.d nodes 3 overlapping ends back into unit cell (b , and nondomain-

s_uch networks are_requwed in order to predict mechanical propgb;agnning seg’r:qe%ts are removed, as they do (no)t bear network

ties. Several techniques have been developed as part of this Weikgs (c). Notation for a two-element case, with fixed end. Lo-

and are described in the following sections. In Part Il of this worlgation and numbering of nodes used in calculating maximum

we discuss the effect of each assumption on simulations for pegress are shown below the two-beam schematic.
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over, it is the fiber phase which is commonly used to provide bothhereKg is the shear correction factor, add the rotation func-
conductivity and mechanical stiffness and strength. tion about they-axis. The shear correction coefficient accounts for

In a network, segments of various length are formed. If wihe difference in the assumed constant versus the actual state of
assume that these segments, upon material processing, behavshiaar stress in this theory and the parabolic variation of the actual,
dependently of one another; i.e., the staple fiber is replaced by theough the thickness. It can be computed 24
segment as the elemental unit, these differences in length neces- 2

. - . ; vV A

sitate study of internal assumptions of load in the beams. K= —= _S

2.2 Beam Assumptions. The beam theory is generally ap- AladA A
plicable for beams of aspect ratio greater than around 5—10. HowhereV is the shear forcer, is the actual shear stress in the cross
ever, in generation of even moderately low volume networks, sction, andA is the corresponding shear area. For the circular
large portion of small segments arisee particularly Part Il of cross-sections of interest, we use a shear correction factor of ap-
this work. As the beam aspect ratio is reduced, consideration pfoximately
deformation due to transverse shear is requif€amoshenko

beam theorysince the simple Euler-Bernoulli beam theory over-
estimates stiffness for a single beam.

_ Infibrous networks, however, the stiffness of an array of beamich agrees closely with the implementation in ABAQUS used
is limited by the relative compliance afforded by even rigid bondg, part |1 of this work to solve for internal loads and displace-
between beams. Several examples in the following sections illygents in networks similarly constructed. Using the variational

trate the small differences in such arrays for Timoshenko versgethod as before, the governing equations are obtained as
Euler beams, with notation for the two-beam problem shown in

Fig. 3. Generally, we derive the forces and displacements in a

®)

3(1+v)d?
KS:_SLZ (6)

d?u

network as follows, with axial forc&;, transverse forc&;, and EAWZO
bending momen®; . A is the cross-section area, ahis moment 5
of inertia. Two cases are outlined, for the Euler-Bernoulli and El d \PfGAK vt dv o .
Timoshenko-type beam assemblies with rigid bonds. The potential dx2 S dx/ ™
energy,, for an Euler-Bernoulli beam assembly can be written
[23,24 as d dv
GAKs— | ¥+ —|=0
1(t du)? d%v\? dx dx
=3 fo {EA(& +El W) dx—F,u(0)—Fau(L) Boundary conditions are analogous to those for the Euler-
(1) Bernoulli beam model, as
dv(0) dv(L) ’ du
—510(0)—Szv(L)—Q1T—Q2 ax EA &):—Fl or u=constant
The variational method yields the governing equations dw
d2u at x=0— 1 EI(W =—Q or ¥=constant
EA-—=0
dx 2 dv\
d4 ) GAKS(\INr &)=—sl or v=constant
El-—=0 ) ®)
dx* p du
- . —= = tant
For rigid connections between beams, we have the boundary con- EAdx F2 or u=cons
ditions
dw
s du at x=L—{ El(d— =Q, or ¥ =constant
EA( —) =—F, or u=constant X
X dv
d% dv GAKs(\Ier ax =S, or v=constant
at x=0— « E|(W)=—Q1 or a=constant . X
Solution of these expressiofygerformed here in MAPLE v.6)0
El(d%) s or constant provided the results of Figs. 4 and 5. In these plots, we required
v i) v=
L ldx 3) I, +1,=1 9)
( du
EA—=F, or u=constant
dx
d2 do rigid bond or torsion spring
at x=L—{ El|5—=|=Q, or —— =constant
dx dx : .
s y deformed configuration
d°v
\ El (W) =S, or v=constant - |2\\)
For Timoshenko beams joined by rigid connections, we rewri it RIS ) S,
the potential energy of the assembly as R Iy | S, ]-—
L du)? dw\? do?
a=| {|EAl —| |+|EIl=—| |+GAK| W+ — 1 3 5 7
o |5 ax dx dx L T T
4 2 L | 4 6|4 |8
—F1u(0) = F2u(L) = S10(0) = Sv (L) = Qu(W)x—0 r l4 | | ly ——
—Qa(W)y=L Fig. 3 Two-beam network analyses notation
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Fig. 4 Two-beam structural moduli, with notation of Fig. 3, for a=30, 90 and 150
deg, plotted for varying beam lengths as log  (/;//,). Nodes between segments are
rigid. Euler-Bernoulli and Timoshenko beam results are compared in each case;
two-beam assemblies are comprised of segments of diameter d=0.2.

and defined cantly only when one segment is approximately one-half the
s length of the other, i.e. the shorter segment is of aspect ratio of

_x (10) approximately 1-2. Thus, for the range of applicability of beam

I cosyy+1;cosy, theory, it probably is of marginal benefit even for rigidly con-

ith . i h . nected beam assemblies, to better estimate their transverse shear
with maximum stress defined as the combined stress due d{@aqqes. In Part II, we describe the occurrence and loads in such

tension/compression and bending in the assembly, occuring at Qpg segment-beams, as they affect network properties.
of the nodal points shown in Fig. 3. Both plots are for a beam

aspect ratio ofl; +1,)/dsegment5 (i-€., dsegments=0.2), for which 2.3 Node Assumptions: Torsion Springs. In our earlier

the Euler-Bernoulli and Timoshenko beams would be expectedwmrk, we described a technique for modeling network response
differ in prediction of loads/displacements. These simple exssing segments joined by torsion sprifd$8,19. We repeat the
amples illustrate that for rigidly connected beams, differences arein steps here for the Euler-Bernoulli beam, and also outline the
only significant when one of the two segments is very short. Diprocedure for the Timoshenko beam. For the Euler-Bernoulli case,
ferences in effective moduli for the two beam types differ signifiwe express the potential energy of the system as

Eefreciive™ Ox

3.5

---------- Timoshenko Beam
Euler Beam

* 0=150°(57/6)

1.0
A 0=90°(n/2)
0.5 & 0:=30°(n/6)
00 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
log(11/12)
Fig. 5 Maximum loads in two-beam assemblies, with notation of Fig. 3, for a=30,

90 and 150 deg, plotted for varying beam lengths as log  (/;//,). Euler-Bernoulli and
Timoshenko beam results are compared in each case; two-beam assemblies are
comprised of segments of diameter d=0.2.
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1 LEA(du2 El(dzv 2
™2 |, |FAax T ae

d 1K dv
X+§ & B —aq
x=0

2 and the governing equations are obtained as

EAdzu_
1 [{dv 2 dx° (12)
+5K | gx  —ee| ~Fau0)—Fau(l)-Sw(0) "
x=L
EIFZO
. dv(0) do(L) " X
S0 (L) = Qu—g == Qa— gy (11) Application of boundary conditions
|
( du
EAl —|=—-F; or u=constant
dx
El d2v K dv -~ dU
at x=0— B2 ax/, a;|=—Q1 or ax —constant (13)
dv
k Ell 5 3 or v=constant
( du
EA—=F, or u=constant
dx
El & k|| L = dv
at x=L— O I . @y|=Qz or 3y - Constant
El(dgv = or v=constant
=% v

allows solution for all internal loads and displacements.
For torsion-spring bonded Timoshenko beams, we have the po-

which, by the variational method, yields the governing equations

i d?u
tential energy EASY o
L du)? 2 do?2 dx
W—(fo EA(& +|El H +GAK%\P+&) }dX Eldzllf GAKS(\P—FdU . (15)
—— =
L (do L (o dx dx
+§ 1 &: + x=0" Q1 +§ 1 &4‘ — - d dv
GAst— \If+d— =0
—F1u(0)—Fau(L) —S;u(0) — Su(L) = Q¥ (0) — QW (L) X X
(14) Application of boundary conditions
|
( du
EA(—): Fy or u=constant
dx
dw dv
at x=0—4¢ EI ax -K; &-i-‘lf—al =Q, or ¥=constant
dv
GAK \If+& =-S; or v =constant
) (16)
( du
EA—=F, or u=constant
dx
= El av K dv N4 = or W =constant
at x=_L— ¢ ax +Ks &"‘ —ay|=Q, =
dv
GAKg ¥+ —|=§, or v =constant
\ dx
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Fig. 6 Two-beam structural moduli, with notation of Fig. 3, for =30, =90 and

a=150 deg, plotted for varying beam lengths as log  (/;//,). Segments are joined by
torsion springs, (a) for normalized spring constants 1.0 and 0.1, and (b) for nor-
malized spring constants 0.01, 0.001, and 0.0001. Euler-Bernoulli and Timoshenko
beam results are compared in each case; two-beam assemblies are comprised of

segments of diameter d=0.2.

allows solution for all internal loads and displacements.
Solution of these expressiofigerformed here in MAPLEV.6.0

for more compliant torsion springge., normalized values of ap-
proximately 0.01 or legsthe distinction between Euler-Bernoulli

for the Euler-Bernoulli beam and in ABAQUS for the Timosh-and Timoshenko beams is largely irrelevant.
enko beamprovided the results of Figs. 6 and 7. In both plots, the By placement of the torsion springs at every segment, we ne-

torsion spring constant is normalized as

— Kl
K= (17

whereK is the torsion spring constaritjs the total beam length

(I=11+1,), andE and| are the usual modulus and moment o
inertia. Both plots are again for a beam aspect ratio lgf (f
+15)/dsegmeri=5 (i.€., dsegmenis=0.2). The compliance afforded by

the torsion springs at the jointsvhich model imperfect bongls

reduces dramatically the importance of transverse shear in cal

lation of the stiffness and maximum stress in the assembly.

glect the higher stiffness afforded by fibers being continuous
through intersections, e.g., we view a two-fiber intersection as a
four-segment intersection, with attendantly greater overall compli-
ance. The effect of this assumption is described presently in Part
Il of this work. However, the motivation for selection of the tor-
ion spring to represent the intersecting region properties comes
rom an assumption about microstructure in the region around a
iber-fiber bond. These bonds are necessarily imperfect. Inclusion
of a torsion spring allows some rotation of the fibers with respect
to one another. Physically, this is not entirely realistic, though it is

nguivalent to a more realistic construct, described next.

shown in Figs. 6 and 7 for effective modulus and maximum stress2.4 Torsion SpringgCompliant Zone Equivalence. In the
in such arrays, the dominant effect is the stiffness of the torsiwitinity of a fiber-fiber intersection in substrate materials, we ob-
spring constant, rather than the assumption of beam type. Cleadgrve 1 incomplete intersection of the two fibers, i.e., fibers are

Journal of Engineering Materials and Technology
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Fig. 7 Maximum loads in two-beam assemblies, with notation of Fig. 3, for a=30,

=90 and a=150 deg, plotted for varying beam lengths as log  (/;/1,). Segments are
joined by torsion springs,  (a) for normalized spring constant 1.0 and 0.1, and (b) for
normalized spring constant 0.01, 0.001, and 0.0001. Euler-Bernoulli and Timosh-
enko beam results are compared in each case; two-beam assemblies are comprised

of segments of diameter d=0.2.

not fully “melted” into one another, and in the extreme, are Equivalence between the compliant zone model and the torsion
bonded only at a point of tangency; andacluster of particles is spring model is shown in the following steps, with the torsion
often present at the intersection, so that the fibers themselves gjing model shown in Fig. 9. The illustration of the two-beam
not in contact, but they are joined by the particles shown models’ equivalence can be easily extended to networks: the two
schematically in Fig. &)). The effects of the former observationpeam cases are shown for simplicity. Two methods are shown for
are discussed in the Conclusions/Future Work section, as tWﬁYding an equivalent compliant zone modElg. 8(b)) which has
mf?r’] only bedprohperly analyzehd by a fully 3% argialtysm.' Thde;ffeq same response to a given set of loads as a torsion spring model
e o B, e e oo e b 1. 9 wiha e vae of ormalzed spring consia

Y 94, P y The beams in the compliant zone modleig. 8b)) are of uni-

is known or can be estimated from micrography or experiment. .
grapiy P cross-section. For the beafyB, the segment fronfA to D

We can assume that this structure, rather than being comprise RS X : . .
two beams of common modulus, is instead an assembly of tRgS elastic modulug, , while the remaining sectiob B of length

multiphase beams, as in Figia. We develop this model assum-P2 has moduluss,. The assembly is symmetric, SO that for the
ing that the regions close to the rigid bond are rather more co€amBC, segmentBE has modulusE,, and sectionFC has
pliant than the remainder of the beam, and denote the model asfifedulus E;. The beams are of equal, uniform cross-section.
“compliant zone model.” However, the same arguments woul§ince the model is symmetrig;;=y,. The symboly is used in
apply for this simple linear system if for some reason the boritie equations to denote this angle.

region were stiffened as compared to the beams. The potential energy of the system in FigbBcan be written as
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(b)

Fig. 8 A reduction of a physically realistic bond between fi-
bers in a fiber /particle network to a 2D beam assembly  (a), and
notation for the two-beam assembly of rigidly joined beams,
with each beam having a “compliant zone” of lengths b, (b)

b1by FiD MiD b FZDB MZDB
U:f + dé +f + dé
o 2EA 2Eyl Y ) 2E,A 2B, 7

b, F2 M2 by—b, F2 M2
+f BE + BEd§3+J’ EC + ECd§4
o 2E,A  2E,l o 2E.A 2E4l

(18)

6E1E,IA(E by + Ep(by—by))X

A Y1 R
Y/ R

Fig. 9 Two-beam assembly of beams joined by a torsion
spring at B

with A, I, F, andM denoting the usual area, moment of inertia,
force and moment.

The torsion spring model of Fig. 9 is comprised of two beams
of lengthb; and Young's modulusg with a torsion spring of
spring constanK at the jointB. The cross-sections of the beams
in this model are the same as that of the compliant zone model.
Again yis used in place of; andy,. The potential energy of the
torsion spring assemblfFig. 9 can be written as

b1 F,ZAB Mis 1FZBC Méc Mag(0)?
U‘fo 2EA " 2EI d‘fﬁfo 2EA T 2B 462t Tk
(19)

We apply a virtual displacement to the beam assembly, and
calculate the load$and thus effective structural modulus and
maximum internal stregsas follows. For both systems, I VY,
and ©® denote the horizontal, vertical and angular displacements
respectively at pointC. For either systemX=dU/dF,, Y
=dUldF,, ®=0U/JM. Subscripts 1 and 2 denote the model
parameters, with 1 being the compliant zone model and 2 the
torsion spring model.

We constrain our systems so thét=0 and ®=0. For each
system we can obtain expressions for the valugsofF, , andM
that which produce a displacemextin the horizontal direction,
as

P07 T2 co 7) A(E (B, —by) + ByEL) 2+ A SN 1) 2(E;— E)[Ex(by— b)) — E;LA1+ AE, sin(7)ZE,b! (20)
Fy1=0 (21)
M, i 3EE5lA Sin('}’).[EZ(bl_bz)Z"' EiLa(2b;—by)]X . 22)

121 cog y)*(E,(by—by) +b,E1) 2+ A sin(y)%(E;— E1)[Ex(by—by)* — E;b3]+ AE; sin(y)E by
Fyo= 3 : 2 2E|A(2b21K+El)X ; 2 2 2 (23)

b1[ (b3AK sin( )2+ 12b,1K cog y)?) + 2b2EIA sin( )2+ 6E12 cog y)?]

Fy2=0 (24)
M, 3(El+b;K)sin(y)?AEIX (25)

For an equivalent system, we have

Journal of Engineering Materials and Technology

(b3AK sin(y)?+ 12b,1K cog y)?)+ 2bsEIA sin( y)?+ 6EI1? coq y)?
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Frxa=Fx2, Fyl:FyZv M,=M, (26)
Substituting Eq(20)—Eq. (25) in Eq. (26) and solving simultaneously gives
2E(b;—b,)[tan( y)?A[E?I%b;b,— K?b}— 2EKbZI (b;—b,)]— 12IKL (El+Kb,;) —3E?I%]

1 (b,IE + 2b,b K — 2Kb?)(6E 12+ 2EAtan( y)?b?l + 120,K I + AK tan( y)2b3) @7)
B — 2Eb,[tan( y)?A[E?I?b;b,— K?bT— 2EKb?I (b; —b,)]— 121Kb(E1+Kb;) — 3E?I%] -
2 (bolE+1b,E+2bb,K)(6E12+ 2EAtan( y)?b3l + 12b, K| + AK tan( y)?b3) (28)
2 pler Euler-Bernoulli beam elements be used by examining the
15 T EE | internal loads borne by these short elements in larger networks.
’ |eu- E2E virtual displacement method As expected, significant joint compliance only makes more de-
16 tailed consideration of internal beam stresses less important, as
1.4 much of the deformation in the assembly results from deformation
1.2 at the torsion spring joint. Figures 6 and 7 illustrate this point for
uilw 1]~ — e a wide range ofnormalized torsion spring constants, with even
W 08 ’,—"'" moderately high torsion spring constants, effectively eliminating
1, the differences between the Euler-Bernoulli and Timoshenko two-
osf beam assemblies.
041 Use of the torsion spring constant model provides a numerically
02 simple adaptation to a rigidly-connected beam network to account
0 : for imperfect bonds. This is particularly important for fiber/
0 50 100 150 200 250 300 350  particle networks, in which the particles may not themselves form
Kb /(El} a percolating, interconnected network, but nonetheless provide
] ) ) porous interconnects between fibers. A demonstration of how this
Fig. 10 Results for the virtual displacement method. Plots of linear model might be easily adapted to account for such connec-

moduli in compliant zones 1 and 2 versus normalized torsion
spring constant, for the specific case of b2=b1/10. The solu-
tion for E, is singular as K—0 (load applied to segment 2 ).

tions, the compliant zone model, was presented here. These types
of connections have been evident in many of the fiber/particle
networks examined by the present authors, but such connections
have been rather challenging to quantify in a satisfactorily statis-
- ) tically representative way. Undoubtedly, with improvements in
For all positive values oE, I, A, K, andb; , with <180 degF,, computational speed and in image analysis, these will shortly be

andM, are positiveF,; andM, must therefore be positive whenthin reach. Adaptation of the linear model can be made to such
Eq. (26) holds. Enforcing this condition results in the validitymultiphase networks as needed.
condition that

Kb1> b,
El ~ 2(by;—by)

which is equivalent to requiring that bofy andE; are positive. 4 ConclusiongFuture Work

Figure 10 is a graphical representation of these results for the . L

specific casé,=b,/10. The modulus of the compliant zone in the We conclude that the simple beam approximation has a good
beam on which the displacement is appli&d, is singular for basis when degenerate netwokkso-beam are considered. We
this case a¥ —0. illustrate the use of a linear torsion spring between beams as an

approach to assigning a linear deformability to the intersection,
. . and show its correspondence to one more physically realistic cir-
3 Discussion cumstance. Results here are tested in Part Il of this work for large

Porous networks comprised of elastic elements exhibit inelastigtworks, and the effects of these various simple assumptions on
response at low strain, in addition to being susceptible to loss B@terial behavior is assessed. These illustrations show however,
percolation(and thus loss of meaningful conductiViin the pres- that more detailed assumptions in the beam theory framework are
ence of even moderately small damage. The present authors hagemerited.
considered various models for both elements and connectivity inln analysis of broad classes of particle/fiber networks, it is
this paper, and in previous work. Euler-Bernoulli beams sholikely that consideration of 3D effects would be required, both in
satisfactory agreement with Timoshenko beams for rigidlynorphology (in terms of how non-percolated impenetrating
connected two-beam models examined here, with aspect ratiogohgses might effect connectivity in a percolated phase, as in the
low as 5. Both structural moduli and maximum stresses were edarticle/fiber networks motivating the present investigatidn
amined, to allow investigation of element choice on stiffness argdso seems likely that small scale 3D analyses might yield signifi-
probable damage toleran¢€igs. 4 and & cant insight such that a satisfactory 2D simulation approach might

Generally, it is recommended that deformation due to tranbe designed. For a 2D or a 3D analysis, intersection of two fibers
verse shear be consideréicke., Timoshenko beams be ugddr even only at a single point of tangency results in an identical
beams of aspect ratios of around 5—10. Beam theory itself is ordffective, or structural modulus, for the assembly due to equilib-
considered valid for beams of minimum aspect ratit0. That rium considerations. In the 3D analysis of such an “imperfect”
these models agree is not entirely a satisfactory reason for abhand, we find, of course, that the maximum stress in the assembly
doning greater detail in models of the network elements; it onlg considerably higher in the case of less impenetration of fibers at
serves to illustrate that consideration of transverse shear deforradbond, due to the stress riser of the saddle-shaped intersection.
tion under these circumstances does not offer much insight. Tine stress singularity arising at such interconnects, and methods
Part 1l of this work, we underscore the recommendation that sirfer their analysis, are reserved for future work.

(29)
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