

Control-Oriented Model of the Propulsion System

J. F. Driscoll

University of Michigan

Sean Torrez, Derek Dalle, Matt Fotia (NASA)

AFRL collaborators: Mike Bolender, David Doman, Mike Oppenheimer

Control of flight dynamics

Pitching moment (M) in vehicle equations requires improved prediction of thrust (T)

Previous models: not control-oriented, too slow, too many variables, did not include control parameters, ignored inlet shock interactions, real gas dissociation & chemistry

MASIV: "Michigan-AFRL Scramjet-in-Vehicle" model:

control-oriented (fast, reduced order, min # of variables) includes inlet shock interactions, real gas, finite rate chemistry specifically identifies control variables

TASKS - Sean Torrez Control-oriented model of combustor / nozzle

1. replace original AFRL propulsion model with first order ODEs of wall heat transfer, variable area: for SCRAM mode

2. add ROM: reduced-order model of 3-D mixing, finite rate reaction, dissociation, : 1-D scaling laws derived from 3-D data

3. assess accuracy of MASIV - compare to CFD, experiments

4. changes to flight dynamics: poles, zeros, sensitivity coefficients

5. "drop in" MASIV into existing AFRL HSV code by Nov 30, 2009

TASKS - Sean Torrez (continued)

6. minimize run time by optimizing ROM

- 7. vary combustor control variables: two fuel locations, ER
- 8. add RAM mode, add isolator shocks, ram-scram transition
- 9. flight dynamics (AFRL HSV code) during ram-scram transition
- 10. optimization study of engine design

TASKS - Derek Dalle

Control-oriented model of inlet and plume

- 1. replace original AFRL inlet model with Riemann wave interaction solver
 - ROM = many shock- expansion interaction, for real gas
 - compute Pressure Recovery Factor (PRF) & spillage vary M_{∞} , α
 - run time of a few seconds
 - include boundary layer displacement, rounded leading edges

2. determine optimum inlet geometry that is not too sensitive to off-design M_{∞} , α

- 3. assess validity of reduced order model: by comparison to CFD
- 4. "drop in" MASIV inlet code into existing AFRL HSV by Nov 30, 2009

TASKS - Derek Dalle (continued)

5. vary control variables:

contraction ratio (CR), cowl flap deflection, boundary layer bleed

6. optimization study of inlet

TASKS Matt Fotia (NASA funded)

Assist Sean and Derek by providing <u>CFD "truth" models</u>

of combustor and inlet to assess their ROMs

- Inlet truth model: CFD++ for Mach 8, with wall boundary layers
- Combustor truth model: FLUENT with turbulent combustion flamelet chemistry

Publications to date:

- 1. "Shift of the Poles and Zeros of a Hypersonic Vehicle Due to Variations in the Scramjet Engine Model", SM Torrez, JF Driscoll, MA Bolender, DB Doman, M Oppenheimer, AIAA Paper 2008-4619
- 2. "A Scramjet Engine Model Including Effects of Precombustion Shocks & Dissociation", SM Torrez, D. Micka, J. F. Driscoll, MA Bolender, DB Doman, M Oppenheimer, AIAA Paper 2008-4619
- 3. "Flight Dynamics of Hypersonic Vehicles: Effects of Improved Propulsion Modeling", SM Torrez, JF Driscoll, MA Bolender, DB Doman, AIAA Paper 2009-6152
- 4. "Scramjet Engine Model MASIV: Role of Finite-Rate Chemistry and Combustor-Isolator Interactions", SM Torrez, JF Driscoll, D Dalle, DJ Micka, M Fotia, AIAA Paper 2009-4939
- 5. "Reduced-Order Modeling of Two-Dimensional Supersonic Flows with Applications to Scramjet Inlets", Derek J. Dalle, Matt L. Fotia, James F. Driscoll, submitted to J. of Propulsion & Power, 2009.

Publication in preparation:

"A Scramjet Model (MASIV) for Control-Oriented Applications", Torrez, Driscoll, Dalle, Fotia, present at AIAA Spaceplanes Meeting Bremen, submit to JPP

"Flight Dynamics of a Hypersonic Vehicle: Effect of Improved Propulsion Modeling", Torrez, Driscoll, Dalle, Fotia, Bolender, Doman, Journal TBD

MASIV Contains the Following Control Variables

Previous models are not adequate: SRGULL, RJPA codes do not include:
- chemical kinetics, modern mixing data
- isolator boundary conditions, not control-oriented

MASIV: a Control – Oriented Propulsion Model

Our ROM for Mixing / Combustion in MASIV

- 1. Add 3-D mixing, modern Turbulent Flamelet Combustion theory to the 1-D equations
- 2. First: rapidly compute 3-D fields for fuel, turbulence levels using measured scaling relations for jet in crossflow:

- 3. Next: Compute "complex chemistry flamelet lookup tables"
 - solve 20+ chemical reactions with dissociation
 - apply modern PDF theory of flamelet statistics
- 4. Then use lookup tables to assign proper chemical reaction rates to each (x,y,z) location, to obtain 3-D reaction rates:

- 5. Integrate 3-D reaction rate field for each species over each (y,z) plane perpendicular to flow \rightarrow to get 1-D reaction rate for each species
- 6. Add this 1-D reaction rate to the 1-D ODE's in MASIV

Advantages of our ROM for mixing, combustion

1. Very fast

- Accurate validated by CFD and experimental data
 providing that we always have fuel jet injected from wall
- 3. Contains modern Turbulent Combustion Theory
 - correctly simulates turbulence statistics with Beta function PDF,
 - correctly simulates combustion with modern flamelet lookup table
 - correctly simulates flameout due to high strain rate (scalar dissipation)
- 4. Contains full chemistry correctly predicts flameout if pressure too low

Assess accuracy of our ROM by comparison to CFD simulations

Assessment of our ROM of Mixing – Combustion

Wall pressures within 8% of experiment

Validate ROM of Mixing – Combustion using experimental data

 Insure that our ROM computes flame length, wall pressure distribution that are consistent with our own experimental data (leveraged funding from other sources)

Inlet Design

- Maximize pressure recovery factor (PRF) at one condition.
 - Zero spillage, single shock turns flow
 - Equal normal Mach numbers
 - Geometry depends on angle of attack
- Constraint on pressure at end of inlet: $p_2 \ge 0.5$ atm.
- Optimize to not have large losses for off-design

On-design Conditions: $M_{\infty} = 8$, $\alpha = 0$

- Freestream conditions:
 - $M_{\infty} = 8.0$
 - $-p_{\infty}$ = 2.18 kPa
 - T_{∞} = 223 K
- Compression results:
 - $-M_2 = 4.28$
 - $p_2 = 66.8 \text{ kPa}$
 - $T_2 = 659 \text{ K}$
 - prf = 0.682

For off design condition: $M_{oo} = 10$, $\alpha = 0$ model complex shock-expansion interactions, spillage

Compute inlet losses: PRF= stagnation pressure recovery factor $\sim 60\%$

How to do it rapidly without CFD, yet maintain accuracy of within 10%?

Validate by comparison to CFD++

Our ROM of the Inlet

Shocks: assume 2-D, exact oblique shock relations with real gas properties (c_p , γ not constant)

Expansions: discretize continuous fan into 2-4 waves

Use exact Riemann equations for each wave interaction (10 to 100 in each inlet)

Boundary layers: displace wall by displacement thickness computed by standard supersonic formula

Rounded leading edges: replace curved shock with three straight shocks, at locations given by Billig's empirical formula:

Weakest interactions identified and neglected

Validate using CFD++ truth solution

A B F C C

Items not modeled: Mixing layer from wave interactions = small effect Unsteady and 3-D effects

Consistent, accurate method to discretize the expansion

- First solve for the conditions after the expansion.
- Then solve for the Mach number as a function of θ .

$$M(\theta) = \sqrt{1 + \frac{\gamma + 1}{\gamma - 1} \tan^2 \left(\sqrt{\frac{\gamma - 1}{\gamma + 1}} \left(\sigma_1 - \mu_1 + \frac{\pi}{2} - \theta\right)\right)}$$

- Form an approximate function $\tilde{M}(\theta)$ that is piecewise constant.
 - Pick several angles $\theta_1, \theta_2, ..., \theta_n$.
 - Find corresponding Mach numbers.
 - Use $v_1 + \phi_1 = v_i + \phi_i$ to find flowpath angles.
 - Isentropic relations give other parameters.
- Use Gaussian quadrature to minimize total error.

$$\varepsilon = \int_{\sigma_1}^{\sigma_n} \left(M(\theta) - \tilde{M}(\theta) \right)^2 d\theta$$

Example: $\delta = 21.8^{\circ}$ deflection with $M_1 = 4$

Our Inlet ROM - off design

- Computation time
 - around 0.6 seconds per solution
 - Will be made faster in MATLAB

Off-design Example: $M_{\infty} = 10$, $\alpha = 0^{\circ}$

Pressure recovery factor = 0.363 Spillage fraction = 0

Thermodynamic variables

 $p_2/p_\infty = 39.9$ $\rho_2/\rho_\infty = 10.4$ $T_2/T_\infty = 3.83$ $M_2 = 4.73$

Assessment of our inlet ROM using CFD++

Inlet ROM using 20 waves in expansion:

	CFD	proposed model	relative error
p_2/p_∞	34.70	35.39	0.0199
T_2/T_∞	3.603	3.645	0.0156
u_2/u_∞	0.9289	0.9302	0.0013
$p_{0,2}/p_{0,\infty}$	0.3331	0.3552	0.0664
6.6	% ei	rror in R	

RESULTS: Off-Design Inlet

- Wave interactions cause dramatic inlet losses
- Sharp gradients in pressure loss
 near design condition
- Multi-objective optimization
 Optimize both design condition and reduce sensitivities to angle of attack and Mach number.

Response to Mach number at $\alpha = 0$

RESULTS: Real gas effects in combustor

RESULTS: profiles of gas properties (in ram mode)

with flamelet chemistry, dissociation, heat loss to walls

Results: Propulsion ROM (AIAA 2008-6386)

- Mixing model identifies realistic location where heat release by combustion occurs
- Finite rate chemistry model realistically identifies pressures, temperatures required (require 0.5 atm to burn)
- This sets realistic limits to operating envelope

RESULTS: Thrust Sensitivity to α , M_{∞} (AIAA 2008-6386)

• With new propulsion model, engine thrust is more sensitive to changes in angle of attack, Mach number and fuel equivalence ratio

Shock-on-lip condition

RESULTS: HSV Trim (AIAA 2008-6386)

 Engine sensitivity affects thrust, which affects trim conditions on AoA and control input (canard, elevator and fuel equivalence ratio)

	Rayleigh-line model (old)	Finite-rate model (new)
α	1.97°	0.919°
<i>m</i>	4.19 lbm/s	3.80 lbm/s
Т	1820 lbf	1530 lbf
T/n	f uel 434 ft/s	403 ft/s
\dot{m}_{f}	0.0525 lbm/s	0.0558 lbm/s
l _{sp}	1080 s	857 s
δ_{0}	0.476°	6.75°
δ_{c}	-9.50°	-10.4°

RESULTS: Vehicle Stability (AIAA 2008-6386)

• New propulsion model: some vehicle modes less stable

RESULTS: Robust Optimization of Inlet

- Current design:
 - Optimized for one condition
 - Poor performance at other conditions
 - Highly sensitive near design point
- Improved design:
 - Decrease sensitivities

- Possibly introduce inlet control variable (*e.g.* cowl deflection).

Example: $M_{\infty} = 8.5$, $\alpha = 0$

Plans for next year

Drop in MASIV into AFRL HSV code by Nov 30, 2009

Minimize run time

Vary control variables

inlet: contraction ratio (CR), cowl flap deflection, boundary layer bleed

combustor: two fuel locations, ER

Add ram mode, isolator shocks, ram-scram

Compute flight dynamics during scram, ram, ram-scram transition

Optimization of combustor, inlet

Next year: Parameter Study of Engine

- Investigate control of MASIV propulsion model
 - Given M_{∞} , α
 - Design variables: fuel location, internal compression
 - Control variables: fuel scheduling, internal wall deflection
 - Re-optimize inlet for trim condition.
- Develop constraints for inlet
 - Given p_2 , T_2 , and M_2
 - Determine critical boundaries
 - Ram/scram transition
 - Unstart, etc.
 - Crucial for design of better inlets
 - Passive inlet for large range of M_{∞}
 - unlikely

Ram-mode region

(Drawing does not represent actual results.)