
Cooperative Unmanned Air Vehicles

A. Girard et al.

Michigan/AFRL Collaborative Center in Control Sciences
University of Michigan
Ann Arbor, Michigan

September 23, 2009

A. Girard et al. (ARC Lab, UM) Cooperative UAVs September 23, 2009 1 / 101



Dynamic Observations in Discrete Event Systems

W. Wang & A. R. Girard

Michigan/AFRL Collaborative Center in Control Sciences
University of Michigan
Ann Arbor, Michigan

September 23, 2009

Wang & Girard (ARC Lab, UM) Dynamic Observations September 23, 2009 2 / 101



Contents

Introduction

Dynamic Observations

Verification of Codiagnosability under Dynamic Observations

The Transformation of Coobservability to Codiagnosability

Optimizing Sensor Activations

Conclusion and Future Work

Wang & Girard (ARC Lab, UM) Dynamic Observations September 23, 2009 3 / 101



Introduction

Motivation

Unmanned Aircraft Systems (UAS) & Discrete Event Systems (DES)

Supervisory control is indispensable for automation in UAS
Precedence order of event occurrences is a key factor

Observations are dynamic in military operations

Dynamic observations are caused by agents turning their sensors on/off
Agents occasionally communicate their observations
The presence of a reconnaissance UAV when an event occurs allows the
UAV to sense that event

Figure: Draganflyer X6 Figure: Wireless Sensor
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Introduction

System Model

The dynamics of DES are driven by event occurrences

E is the set of events

The set of all finite strings of events in E is denoted by E∗

A language L defined on E is a subset of E∗ : L ⊆ E∗

The behavior of a DES is described as a language

A language can be modeled by an automaton (finite or infinite state)

The prefix-closure of L is: L := {s ∈ E∗ : (∃t ∈ E∗)st ∈ L}
A language L is prefix closed iff L = L
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Introduction

System Model

Finite State Automaton G = (X,E, δ, x0) where

X is the state space with finite cardinality
E is the set of events
δ : X × E → X is the transition function
x0 is the initial state

The operation of G always starts at the initial state x0

δ is extended recursively to the domain X × E∗ in the following
manner: δ(x0, ε) = x; for s ∈ E∗ and e ∈ E, δ(x0, se) = δ(δ(x0, s), e)
The language generated by G is
L(G) = {s ∈ E∗ : δ(x0, s) is defined}
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Introduction

System Model

The set of diagnostic or control agents is A
When the local behavior is modeled by automaton Gi for each i ∈ A,
the global behavior can be synchronized by using the parallel
composition technique

In parallel composition, a common event (an event in Ei ∩ Ej) can
only be executed if the two automata both execute it simultaneously
Other events can be executed whenever possible
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Introduction

Synchronization of Local Models: 40 by 40 Mile Problem

To model a distributed system globally, we may start with building local
models. Then, synchronize local models by parallel composition for global
model. We consider the 40 by 40 mile problem for example

We have a bomber with three bombs and a jammer. Hostile side has
three radars

Our goal is to eliminate hostile radars

Our bomber cannot go directly into a radar detection region if the
radar is alive and not jammed

When a radar is jammed, its detection region shrinks and then our
bomber can go close enough to disable it
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Introduction

Synchronization of Local Models: 40 by 40 Mile Problem

Event labels: mkl is for bomber moving from k to l, dk is for disable
radar k, jk is for jamming radar k, and uk is for unjamming radar k

Figures are models for bomber mobility, bomber attack, jammer, and
one of three radars, respectively
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Introduction

Synchronization of Local Models: 40 by 40 Mile Problem

Figure: The global model for the 40 by 40 mile problem
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Introduction

System Model

Not all events are observable to every agent. For each agent i ∈ A,
we define E = Eo,i∪̇Euo,i where

Eo,i: potentially observable event set to agent i ∈ A
Euo,i: unobservable event set to agent i ∈ A

Let Eo = ∪i∈AEo,i and Euo = E \ Eo

An automaton that has no deadlocked state (a state that has no
outgoing event) is called live
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Introduction

System Model

We consider a military operation scenario as follows.

Suppose that we know there is a hidden hostile installation, comprised
of a missile launcher and a radar, in a region r, but we don’t know
the precise position of the installation

Suppose we have a reconnaissance unmanned aerial vehicle (UAV), an
attacker, and a jammer

The reconnaissance UAV is able to enter or leave the region r

The goal of the hostile side is to launch a missile to attack us,
whereas our goal is to eliminate the hostile missile launcher
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Introduction

System Model

The corresponding event set describes the example:
E = {e, l, jr, uj, dm, sl, lr, or, to, rr, lm}, where

e: reconnaissance UAV enters region r

l: reconnaissance UAV leaves region r

jr: jammer jams hostile radar

uj: jammer unjams hostile radar

dm: attacker disables hostile radar

sl: hostile side starts to set missile launcher

lr: hostile side launcher becomes ready

or: hostile side opens launcher radar

to: a time threshold has passed since hostile side opened radar

rr: hostile side radar becomes ready, and

lm: hostile side launches a missile
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Introduction

System Model
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Figure: A Military Operation can be modeled by DES
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Introduction

System Model

Suppose that the set of controllable events is
Ec = {e, l, jr, uj, dm, to} and the set of uncontrollable events is
Euc = {sl, lr, or, rr, lm}
For the hostile side to successfully launch a missile, it needs to
complete all events (tasks) sl, lr, or, rr, and lm

Events must not necessarily occur in this order, but event sl must
occur before all other events, or must occur before rr, and lm must
occur after all other events

Consequently, to prevent the hostile side from launching a missile, we
either disable the launcher (enabling dm) or jam the radar (enabling
event jr) before lm occurs
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Introduction

System Model

However, since rr and lm are uncontrollable, we need to disable to at
states 6 and 15 at the latest, if we want to prevent event lm from
occuring at state 19
Since the missile launcher is hidden, we are only able to disable it
after the hostile side has started to set the launcher (after an
occurrence of sl)

We assume the hostile side needs to reopen its radar after it’s been
jammed and then unjammed

Our goal is achieved when the system ends up at state 10, which is
marked by double circles
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Introduction

System Observations

In this scenario, observations of events are dynamic

Since the reconnaissance UAV is not in region r when the system is at
state 0, we cannot observe the occurrence of sl at state 0
Therefore, we are not able to evaluate how long the hostile side
prepares its launcher and are not able to observe the occurrence event
lr at states 11, and 14
On the other side, since the reconnaissance UAV is in the region r
when the system is at state 1, we are able to observe the occurrence
of sl at state 1
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Introduction

System Observations

Thus, we are able to evaluate how long the hostile side prepares its
launcher and able to observe the event lr at states 2, 4, and 7
The observations for events or and to are also dynamic. An
occurrence of event or is only observed when the corresponding
sensor for detecting a radar signal is activated,

and whether or not an occurrence of event to is observed depends on
the observation of the occurrence of event or at the closest upstream
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Introduction

System Observations
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Figure: Observations of sl, lr, or, and to depend on system dynamics
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Dynamic Observations

Observation Mapping

Dynamic observations: the agents’ observations depend on both of

which event is observed and
which trajectory of the system dynamics is followed

Whether or not an event occurrence is observable by agent i, i ∈ A,
is described by the observation mapping

ωi : L(G)→ 2Eo

For a trajectory s ∈ L(G), ωi(s) is the subset of observable events Eo

after s.
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Dynamic Observations

Information Mapping

The information mapping (or projection) θi : L(G)→ E∗o is:

for the empty string ε, θi(ε) = ε, and
for all s, se ∈ L(G) with e ∈ E,

θi(se) =
{
θi(s)e if e ∈ ωi(s)
θi(s) otherwise

After the occurrence of s, the next event e is seen by agent i when it
occurs after s if and only if it is in ωi(s)
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Dynamic Observations Two Key Properties of Observation

Event Diagnosis

Notations for event diagnosis

The set of fault events to be diagnosed is denoted by Ef ⊆ E
The set of fault events is partitioned into different fault types:
Ef = Ef1 ∪̇ . . . ∪̇EfK

s ∈ Ψ(Efk
) means that the last event of a trace s ∈ L(G) is a fault

event of type fk

L(G)/s denotes the postlanguage of L(G) after s
Efk
∈ s denotes that PC(s) ∩Ψ(Efk

) 6= ∅
|s| is the number of event occurrences in s

The objective is to identify the occurrence of events, if any, in the set
of fault events by tracking the observed traces
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Dynamic Observations Two Key Properties of Observation

Event Diagnosis

Definition

A prefix-closed and live language L(G) is said to be codiagnosable with
respect to θi, i ∈ A, and Πf on Ef if the following holds:
(∀ k ∈ Πf )(∃ nk ∈ N)(∀ s ∈ Ψ(Efk

))(∀ t ∈ L(G)/s)[|t| ≥ nk ⇒ CD]
where the codiagnosability condition CD is
(∃ i ∈ A)(∀ µ ∈ L(G))θi(µ) = θi(st)⇒ Efk

∈ µ

A system is said to be codiagnosable if any trace that contains a type k
fault event can be distinguished by at least one agent from all traces
without a type k fault event within finite delay
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Dynamic Observations Two Key Properties of Observation

Coobservability for Control

Control is necessary because the uncontrolled DES G may violate
safety or nonblocking specifications

The specifications on safety and nonblocking are referred to as “legal
behavior” in DES

The legal behavior K is described as a subset of L(G)
The goal of decentralized supervisory control is to find local
supervisors such that the supervised system, denoted by ∧N

i=1Si/G,
generates the legal language K, that is, L(∧N

i=1Si/G) = K

Wang & Girard (ARC Lab, UM) Dynamic Observations September 23, 2009 25 / 101



Dynamic Observations Two Key Properties of Observation

Coobservability for Control

The notion of coobservability is used to classify whether or not local
controllers are able to make sufficient observations of the system such
that the correct control decisions can be made

Notations for coobservability:

Ec,i ⊆ E, i ∈ A, is the set of events that are controllable to agent i
Ec = ∪i∈AEc,i is the set of controllable events,
ωi, i ∈ A, is the observation mapping defined on language K
For an event e ∈ Ec, Ac(e) is the set of agents that are able to control
e, i.e., Ac(e) = {i ∈ A : e ∈ Ec,i}
Suppose H = (XH , E, δH , x0) is the automaton that generates
language K
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Dynamic Observations Two Key Properties of Observation

Coobservability for Control

Definition

A prefix-closed language K = L(H) ⊆ L(G) is coobservable with respect
to L(G), and Ec,i, i ∈ A, if for all s ∈ K and e ∈ Ec with se ∈ L(G), the
existence of sie ∈ K with θi(si) = θi(s) for all i ∈ Ac(e) implies se ∈ K,
where θi is the information mapping for supervisor i corresponding to ωi.

Intuitively, in a decentralized system G, the legal behavior K is said
to be coobservable if for any controllable event e ∈ Ec and trace
s ∈ K, that, if followed by e, leads to an illegal trace in L(G), there
is at least one agent that is able to control e and can distinguish the
trace from all other traces t such that te ∈ K
In this way, e can be disabled after s without affecting the legal
behavior of the system
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Verification of Codiagnosability

Transition-based Dynamic Observations

The set of transitions of G is
TR(G) = {(x, e) ∈ X × E : δ(x, e) is defined}
The set of transitions that can be observed by an agent i is specified
by an index function Ii : TR(G)→ {0, 1}

Ii(x, e) = 1 means that the transition (x, e) is observable to diagnosing
agent i and
Ii(x, e) = 0 means that it is not

The observation mapping ωi corresponds to Ii as
(∀e ∈ Eo)(∀s ∈ L(G))e ∈ ωi(s)⇔ Ii(δ(x0, s), e) = 1
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Verification of Codiagnosability

Transition-based Dynamic Observations

For the construction of the verifier, the pseudo index function
Ip : TR(G)→ {0, 1} is defined by

Ip(x, e) =
{

1 (∃ i ∈ A) Ii(x, e) = 1;
0 otherwise

A verifier updates its system estimation for an occurrence of event e
when the corresponding Ip(x, e) = 1
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Verification of Codiagnosability

The Definition of Cluster Automata

Under the observation Ii of diagnosing agent i ∈ A, cluster ci(x) is
the subautomaton of the accessible, fault free part of G whose

initial state x is the initial state or is entered by some observable
transition in G and
whose set of transitions is the maximum set of unobservable and
reachable transitions from state x
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Verification of Codiagnosability

The Transition Function
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Verification of Codiagnosability

The Transition Function

[ck1(x1), . . . , ckM (xM ), (cp(xp), v)] is a state in the verifier means that
there is at least one trace t ∈ L(G) that ends up at cp(xp) such that,
for each i ∈ A, there exists a type k faulty free trace ti ∈ L(G) that
ends up at state xi with last event observable to i that looks the
same as t

Then, for all possible tt′e ∈ L(G) such that t′ ∈ E∗ is unobservable
to any agent and e ∈ E is observable to some agents, one purpose of
the transition function is to capture all possible vector of type k fault
free traces [t1t′1, . . . , tM t

′
m] such that tit

′
i looks the same to tt′e for

agent i ∈ A
Instead of illustrating such vector of traces, this is done by illustrating
corresponding vectors of clusters

The illustration is based on the previous cluster and whether or not
the occurrence of e is observed by the agent
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Verification of Codiagnosability

The Transition Function

Another purpose of transition function is to keep track of whether or
not tt′e contains a type k fault event

Correspondingly, the Nfk label at the part of the vector
(cp(δ(x, e)), v) for pseudo agent may change to fk

It depends on whether the unobservable subtraces t′ of tt′e contain a
type k fault event or not
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Verification of Codiagnosability

The Cluster-based Verifier

Starting with [ck1(x0), . . . , ckM (x0), (cp(x0), Nfk)], a cluster-based
verifier can be constructed by recursively applying the transition
function

By the definition of codiagnosability, we have that G is not
codiagnosable under observation Ii, 1 = 1, . . . ,M , iff

1 a state (xD, 1) ∈ XD is found with corresponding cp(x) ∈ Cfk−cycle
p , or

2 cp(x) ∈ Ccycle
p with xD labeled fk, or if

3 a cycle with fk label exists in the C-Verifier
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Verification of Codiagnosability

Examples of Cluster-based Verifier

The following example shows a cluster-based verifier
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Verification of Codiagnosability

Complexity of the Cluster-based Verifier

Theorem

For a system modeled by automaton G with a fixed number of diagnostic
agents, the verification of codiagnosability for transition-based dynamic
observations is in worst-case of polynomial complexity in the size of the
state space X of G
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Verification of Codiagnosability

Summary

We have presented a new procedure for the verification of the
properties of diagnosability and codiagnosability in DES

Our approach was specifically developed to handle the case of
transition-based dynamic observations

For a fixed number of agents, our verifier is in the worst-case of
polynomial time in the state space of the system

The new testing procedure that we have developed will be very useful
in solving sensor activation problems or distributed diagnosis with
communication problems
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The Transformation of Coobservability to Codiagnosability

Coobservability vs Codiagnosability

The notion of codiagnosability is used to classify whether or not any
traces that contain a fault event can be distinguished by at least one
agent from all traces without the fault event within finite delay

The notion of coobservability is used to classify whether or not local
controllers are able to make sufficient observations of the system such
that the correct control decisions can be made

It was usually believed that the problem of coobservability was more
complicated than the problem of codiagnosability

However, we have shown that the problem of coobservability can be
transformed to the problem of codiagnosability

Wang & Girard (ARC Lab, UM) Dynamic Observations September 23, 2009 40 / 101



The Transformation of Coobservability to Codiagnosability

The Transformation Algorithm

Algorithm Coobs-to-Codiag-I:

1 Set H̃(e)← H and add state d to state space of H̃(e). Then, add
self-loop (d, v) into TR(H̃(e)), i.e., δH̃(e)(d, v) = d

2 For all x ∈ XH , if (x, e) ∈ TR(G) \ TR(H), add transition (x, f) to
TR(H̃(e)) with δH̃(e)(x, f) = d; if (x, e) ∈ TR(H), add transition

(x, u) to TR(H̃(e)) with δH̃(e)(x, u) = d

3 We add an observable self-loop with event label z 6∈ E at each state
x ∈ XH ⊆ X that is a deadlock state in X

4 For all i ∈ Ac(e), we specify observation mapping ωi,H̃(e) for L(H̃(e))

as follows. For all s ∈ L(H̃(e)) such that s ∈ L(H) and the last
event of s is not z, set ωi,H̃(e)(s)← ωi(s). For all sz ∈ L(H̃(e)), set

ωi,H̃(e)(s)← {z}. For all sfvn, tuvn ∈ L(H̃(e)) and n ∈ N, set

ωi,H̃(e)(sfv
n)← {v} and ωi,H̃(e)(tuv

n)← {v}
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The Transformation of Coobservability to Codiagnosability

The Transformation Algorithm

In Algorithm Coobs-to-Codiag-I, we added a state d in the
original system and a observable self-loop with event label v at state d

The transformation is done for each controllable event e ∈ Ec

individually

If at a state where e needs to be disabled, we connect that state to
state d using unobservable event u

If at a state where e cannot be disabled, we connect that state to
state d using unobservable fault event f
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The Transformation of Coobservability to Codiagnosability

The Transformation Algorithm

In this way, for two arbitrary traces s and t, if the controller needs to
disable e after s but cannot disable e after t, we have θi(s) = θi(t)
implies θi(sfvn) = θi(tuvn) for all n ∈ N
That is, if two traces s and t cannot being distinguished by any agent
and have a control conflict in the original system, they will cause a
violation of codiagnosability in the transformed system

Suppose agent i need to disable event b at state 2 but nowhere else
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Figure: The legal behavior H and
its observations to agent i.
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Figure: The automaton H̃(b) and
its observations to an agent i.
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The Transformation of Coobservability to Codiagnosability

Summary

We have presented an algorithm to transform the problem of
coobservability to the problem of codiagnosability

It is shown that, after the transformation, the problems of
observability and coobservability are a special class of the problems of
diagnosability and codiagnosability

This enables us to leverage the large literature available for
codiagnosability to solve problems of coobservability

Because of their computational efficiency, these algorithms can be
used for transforming large systems in practice

Wang & Girard (ARC Lab, UM) Dynamic Observations September 23, 2009 44 / 101



The Transformation of Coobservability to Codiagnosability

Related Publications

Journal

W. Wang, A. R. Girard, S. Lafortune, and F. Lin “Codiagnosability and
Coobservability in Dynamic Observations”, revising for the
resubmission to IEEE Transactions on Automatic Control, whole paper

Conference

W. Wang, A. R. Girard, S. Lafortune, and F. Lin “The Verification of
Codiagnosability in the Case of Dynamic Observations”, in Proc. 2009
European Control Conference, Aug. 2009
W. Wang and A. R. Girard “Transformation of Coobservability to
Codiagnosability in Dynamic Observations”, submitted to 2010
American Control Conference

Other

“The Verification of Co-Observability When Observations are
Transition-Based Event Occurrences”, in preparation
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Optimizing Sensor Activations

Active Sensing of Partially Observed DES

Estimation and sensor activation (SA) are interdependent!

What you have activated in the past affects your estimation (θi)
What you estimate influences your future activation decisions (ωi)

Consequently, the sensor activation policy (SAP) ωi is a subclass of
the observation mapping that satisfies feasibility for sensor activation

If two strings “look the same,” then they must have same activation
decision on a common possible event
Formally, ω is said to be feasible if
(∀e ∈ E)(∀se, s′e ∈ L(G)) θω(s) = θω(s′)⇒ [e ∈ ω(s)⇔ e ∈ ω(s′)]
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Optimizing Sensor Activations

Active Sensing of Partially Observed DES
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Optimizing Sensor Activations

Active Sensing of Partially Observed DES

System 
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Optimizing Sensor Activations

Active Sensing of Partially Observed DES

Example of feasibility for SAP:

If a is activated initially, then:

Not activating g initially and a after string g is not feasible!

after ε and g, we must have the same activation decision for a

52

1
a

a
g

g
4

0
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Active Sensing of Partially Observed DES for Event
Diagnosis

Automaton G and set of agents A
Potentially Observable Event Set Eo of G.

Set of fault events to be diagnosed Ef = {f}
When to activate sensors?

Activate only if necessary, but enough to diagnose Ef
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Language-based Partition

Why partition the language?

Sensor Activation Policy: ω : L(G)→ 2Eo

Language L(G) typically has infinite cardinality

Solution space of the sensor activation problem needs to be finite

Restrict SAP to be a subset of a finite partition of L(G)
All strings in the same element of partition have the same activation
decision for their last event
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Language-based Partition

Formally, ∆ is Language-based Partition (LBP) if its elements δj ,
j = 0, 1, . . . ,m satisfy

∆ is a partition of L(G)
δ0 = {ε}
Any strings in the same element of the partition ∆ must have the same
last event

SAP: Ω ⊆ ∆
For each δi ∈ Ω, the last event in strings in δi is activated
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Problem Statement

Given: G, Eo, Ef , and ∆
find: Ω∗ ⊆ ∆ such that

Ω∗ satisfies the diagnosability
requirement

Ω∗ satisfies the feasibility
requirement

Ω∗ is a minimal set
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43
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Figure: A Minimal Solution:
( ) activated; [ ] not activated
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Main Theorems

Theorem

[Monotonicity]
Let Ω1 and Ω2 be two feasible SAP, such that Ω1 ⊆ Ω2. Then, the system
is diagnosable for Ω1 implies that it is diagnosable for Ω2.

Theorem

[Existence of Maximum Element]
Let Ω be an SAP. Then there exists a maximum feasible subpolicy Ω↑F

that contains all ΩF ⊆ Ω that are feasible.
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Active Sensing: Min-Sen-Diag Algorithm

Suppose that (i) Ω ⊆ ∆ is feasible, (ii) the system is diagnosable for
Ω, (iii) D ⊆ ∆ is the set whose elements have been examined but
failed to be removed from Ω
For a δi ∈ Ω \D, let Ωtest = Ω \ {δi} and, then, calculate Ω↑Ftest

If there exists δj 6∈ Ω↑Ftest such that δj ∈ D, or if the system is not

diagnosable for Ω↑Ftest, then the system is not diagnosable for any
feasible subsets of Ωtest

⇒ Keep δi activated and set D ← D ∪ {δi}
If the system is diagnosable for Ω↑Ftest, then δi need not be activated

⇒ Reinitialize Ω to Ω↑Ftest

Proceed until Ω = D. Then, set Ω∗ ← Ω. A minimal (feasible and
diagnosable) solution is found
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Active Sensing: ↑ F and Window Partitions

The set ∆w = {δi ⊆ L(G) : i = 0, . . . ,m} is called an n-Window-Partition
of L(G) if

For all u ∈ L(G), if ‖u‖ < n then {u} ∈ ∆w.

For all u, v ∈ L(G) with their length larger or equal to n, u and v are
in the same element of the partition iff

they have same subsequence of last n event occurrences and,
before the last event occurrence, they reach the same state
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Active Sensing: ↑ F and Window Partitions

2-Window-Partition is
∆w = {{ε}, {f}, {d}, {e},
(b, 0, f), (b, 0, d), (b, 0, e), (d, 5, c), (f, 1, a),
(c, 1, a), (e, 2, a), (a, 3, e), (e, 4, b), (a, 4, b)}
(b, 0, f) denotes the set of all traces
t ∈ L(G) that end with subtrace bf
and visit state 0 before last event f
occurs
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Optimizing Sensor Activations For the Purpose of Event Diagnosis

Window Partitions: Maximum Feasible Subpolicy

Algorithm ↑F-Window, given in paper

Intuition:

Calculate the possible confusable pairs of elements in ∆w ×∆w under
current estimation of Ω↑F

Using these possible confusable pairs, remove the sensor activations
that cause a violation of feasibility
Stop iteration when no more confusable pair can be found and no more
sensor activation should be removed

Polynomial in ∆w
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Optimizing Sensor Activations For the Purpose of Control

Sensor Activation Problems for the Purpose of Control
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Figure: Sensor Activation for the purpose of control
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Optimizing Sensor Activations For the Purpose of Control

Sensor Activation Problems for the Purpose of Control

Agents activate sensors to observe event occurrences such that
correct control decisions can be made

In a decentralized system, the sufficiency of sensor activation is
measured by coobservability

With the restriction of the solution space to the transitions of the
modeling automaton, polynomial algorithms are developed for
calculating offline minimal sensor activation policies

An algorithm is developed for calculating all possible minimal sensor
activation policies for centralized control

An online algorithm is developed for minimizing sensor activation,
which achieves fast online calculation without any restriction of the
solution space
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Optimizing Sensor Activations For the Purpose of Control

Summary

Different algorithms were developed for optimizing sensor activation
policies that preserve diagnosability and observability for centralized
systems

Some results are extended to decentralized systems for
codiagnosability and coobservability

For a fixed number of agents, most algorithms are of worst-case
polynomial complexity
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Optimizing Sensor Activations For the Purpose of Control

Related Publications

Journal

W. Wang, S. Lafortune, F. Lin, and A. R. Girard “Minimization of
Dynamic Sensor Activation in Discrete Event Systems for the Purpose
of Control ”, to appear in IEEE Transactions on Automatic Control,
whole paper
W. Wang, S. Lafortune, A. R. Girard, and F. Lin“Optimal Sensor
Activation for Diagnosing of Discrete Event Systems”, revising for
resubmission to Automatica, whole paper
W. Wang, A. R. Girard, and C. Gong “An Algorithm for Calculating all
Minimal Sensor Activation Policies in Supervisory Control”, submitted
to IEEE Transactions on Automatic Control
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Optimizing Sensor Activations For the Purpose of Control

Related Publications

Conference

W. Wang, S. Lafortune, A. R. Girard, and F. Lin, “Dynamic Sensor
Activation for Event Diagnosis”, in Proc. 2009 American Control
Conference, Jun. 2009
W. Wang, F. Lin, S. Lafortune, and A. R. Girard “An Online Algorithm
for Minimal Sensor Activation in Discrete Event Systems”, accepted to
48th IEEE Conference on Decision and Control
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Conclusion and Future Work

Conclusion

If we model high level behavior of military operations by DES, then
dynamic observations are indispensable

We developed polynomial verifiers for testing codiagnosability and
coobservability under transition-based dynamic observations

We developed polynomial algorithms that transform the problem of
coobservability to the problem of codiagnosability for language-based
dynamic observations

We have comprehensively investigated problems of optimizing sensor
activations for both event diagnosis and control
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Conclusion and Future Work

Future Work

Develop modular approach for modeling military missions such that
optimization can be done at both global and local levels separately

Reinvestigate dynamic observations for distributed systems for
modular architecture

Study the sensor activation problems when an activating of a sensor
will sense a subset of events but cannot distinguish which event
precisely
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Conclusion and Future Work

Discrete Event Modeling of Heterogeneous Human
Operator Team in Classification Task
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September 23, 2009
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Motivation

Situation Overview

ISR mission : a team of
operators performing a
monitoring task that demands
classification decisions.

A stream of image data taken
by UAVs shown to operators

Operator team : mixture of two
levels of expertise (novice and
expert)

Classification decision made
contributes to the strategic
decisions.

Team of UAVs in opera0on 

Team of Human Operators 

Classifica0on Visual Data 

Strategic Decision 

Figure: Abstracted ISR mission overview
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Motivation

Situation Overview

Key aspects

Operator’s mental state is related to workload. [Yerkes-Dodson 1908,
Sheridan, 1980]

Operator’s classification decision is related to the mental state. (Role
of emotional arousal in response time) [Kuchinke et al., 2007]

Supervisory action regulation strategy : when to focus and when to
rest?

Expert (trained operator) is superior to novice in some facets
(decision confidence, focus, etc.)

Collaboration problem: what is the best way to utilize the expert?

Human supervisory system, or a supervisor
Ultimately to improve the classification performance of the campaigned
heterogeneous operator team

Coordinate individual operator actions by regulating tasks, and utilize
the specialized experts

Sensor activation problem: when, and based on what information, does
the supervisor take part?
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Motivation

Approach

Discrete Event System Modeling [Cassandras & Lafortune, 1999]

A good candidate to represent complex human behavior in rather
simple discrete fashion

Some previous studies

Human-unmanned vehicle behavior for a heterogeneous unmanned
vehicle system [Nehme, 2009]
Dynamic behavior (stress, fatigue, personality, cognitive complexity)
filters using DESM [Seck et al. 2005]

Related publication

Hyun, B., Park. C.J., Wang, W. Girard, A.R., “Discrete Event
Modeling of Heterogeneous Human Operator Team in Classification
Task”, American Control Conference (ACC), 2010, Invited Session,
Submitted.
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Discrete Event Modeling

Task & Rest Model

Two modes of operator activity during the
campaign: Task service and Rest

Task servicing

A task is an object of interest that is
to be identified.
A task is modeled as a queueing
process with servicing rate p
(received photo).
Difficulty of task (Heavy or Light) by
task weight T{H,L}n = n{H,L} · p

Rest (idle state) : queueing process

Supervisory commands: Time-Out and
Wait Flag

TO : authority to terminate servicing
task
WF : allocate task if idle
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Figure: Task service & rest
queueing model

Hyun et al. (ARC Lab, UM) DEM of Human Operator September 23, 2009 72 / 101



Discrete Event Modeling

Mental Model

Yerkes-Dodson Law [Yerkes-Dodson 1908]

Performance as a function of mental
arousal.

Mental arousal due to stress,
boredom, hunger...
Mental workload vs. loading factor
[Sheridan, 1980]

Discretized event modeling version

Five distinct states [Seck et al. 2005]
XMe = {š1, s̊2, s̊3, s̊4, š5}
Event-driven transitions: a ascending,
d descending

Decision quality is determined by
mental state legality
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Figure: Discretized Y-D law with
event-driven transitions
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Discrete Event Modeling

Monitoring Model

How the operator behaves when a task is
received/not received and how the mental state is
stimulated.

Monitoring states

Modes of activities : Task Heavy (TH),
Light (TL); Rest State (RS)
Intermediate auxiliary states : Task
Received (TR), Task Terminated (tt)
XMo =

{
tt, TR, TL, TH,RS

}
Monitoring events

Supervisory commands : WF , TO
Workload and incoming photo : H, L, p
Mental state transitions : a, d
EMo = {WF,TO,H,L, p, a, d}

Deterministic automaton
GMo = {XMo, EMo, f,Γ, x0, Xm}

Figure: Monitoring model
finite state machine
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Discrete Event Modeling

Natural Behavior : Parallel Processing

Regular, unrefined operator behavior during
the campaign

Parallel Composition gives a map of
common-events-driven state
transitions between two automata

Mental state transition during
monitoring session

G = GMe||GMo

Observed that excessive workload, or
boredom, causes operator behavior to
be in illegal states

Figure: Natural behavior of a
single operator (Compiled by
DESUMA)
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Discrete Event Modeling

Supervisory Control: Regulated Behavior

Supervisory controller prohibits any
transitions to illegal states

Controllable events (supervisor
commands) Ec = {TO,WF}
Given Ec, natural behavior G is
controllable.

Assumed that the state machines are
fully observable.

Figure: Regulated behavior for a
single operator
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Model Validation & Future Work

Experiment Interface Design

Pictorial and verbal stimuli experiment

Human-subject experiments to
investigate the mental arousal during
search tasks

In preparation with ARC Lab
members, University of Michigan

Response time is measured to estimate
the mental arousal

Future Work

Obtain experiment results that will
give some idea on mental
state-workload

Inclusion of decision confidence
(subjective measure) in DESM model

State flow simulation for dynamic
scenario with uncertain data rate
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Model Validation & Future Work
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Model Validation & Future Work

Optimizing Performance of Human Operators
Op#mizing Performance of Human Operators (HO) 

Mo#va#on & Difficul#es 

•  Mo#va#on 
–  UAVs are important in warfare 
–  HO are crucial in UAS 
–  In future, the HO’s role is decision maker 

•  Difficul#es  
–  Workload‐performance curve is unknown 
–  Lack of available data 
–  Hard to check decision correctness 

Yerkes‐Dodson Law 

9/23/09  Michigan/AFRL Collabora#ve Center in Control Science  0 

•  Arousal‐performance curve 
–  Concave but depends on many factors 
–  Yerkes, R.M. & Dodson, J.D. (1908)  

Stochas#c Approxima#on (SA) 

•  Solve nonlinear eqn. f(x) = 0 when 
–  f(x)  is unknown  
–   Measurement Mn = f(xn) + Un , noise Un is 

independent, bounded, and E(Un) = 0  
–  H. Robbins & S. Monro (1951) 

Problem to Solve 

•  Given unknown concave func#on f(x) 
that has a^ained its maximum at x*, 
which can be not unique 

•  Observa#ons are the random variable 
N(x) s.t. E[N(x)] = f (x) with bounded 
noise 

•  Find a sequence f(x1), f(x2),….s.t.  

f(x) 

x 

€ 

f (xn )→ f (x*)
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Model Validation & Future Work

Optimizing Performance of Human Operators

!"#$%&'()&*$

•! !"#$%&'()#*$+,-$(#$.')/#0$(1$

23#&,4-5$

•! 6"#&#${a
n
} ,-0${c

n
} ,&#$.#78#-+#.$

'9$%,&,*#3#&.$3",3$.,4.91$

+'-/#&5#-+#$&#782&#*#-3.:$$

+#',-#.$/(0'12,)&*$

•! ;:$<'-5=$>:$?:$<2&,&0=$,-0$6:$6,-5=$

@A3'+",.4+$>%%&'B2*,4'-$3'$

C%4*2D#$3"#$$E#&9'&*,-+#$'9$F8*,-$

C%#&,3'&.G=$A8(*2H#0$3'$>*#&2+,-$

;'-3&')$;'-9#&#-+#$IJKJ$

3"#241*5$6#2171&*$3&88#2-*#77$

•! 6#$%&'%'.#$3'$+'*%,&#$3"#$

0#+2.2'-.$'9$3L'$02M#&#-3$'%#&,3'&.$

,-0$+"#+N$3"#$+'-.2.3#-+1$

•! 6#$."'L$3",3$'%4*2D2-5$3"#$&,3#$'9$

.8+"$+'-.2.3#-+1$2.$#782/,)#-3$3'$

'%4*2D2-5$3"#$&,3#$'9$+'&&#+3$

0#+2.2'-.:$$

+#7#,82"$9&,'$

•! O*%&'/#$A>$,)5'&23"*.$9'&$%&'/,()#$

"25"#.3$%#&9'&*,-+#$'9$FC$
–! !"#$+'-/#&5#-+#$'9$A>$,)5'&23"*.$2.$

.#-.24/#$3'$02M#&#-+#$'9$,%%)2+,4'-.$

•! !#.3$,)5'&23"*.$2-$('3"$.2*8),4'-.$

,-0$2-$&#,)$P>A$$

•! Q#/#)'%$,0,%4/#$+'-3&')$*#3"'0.$

(,.#0$'-$A>$,)5'&23"*.$

x
n+1 = xn + an

N(x
n
+ c

n
) ! N(x

n
! c

n
)

c
n

Gong , Girard, & Wang (ARC Lab, UM) Optimizing HO Performance September 23, 2009 80 / 101



Introduction

A Combined Tabu Search and 2-opt Heuristic for
Multiple Vehicle Routing

J. Jackson, A. Girard, S. Rasmussen, C. Schumacher

Michigan/AFRL Collaborative Center in Control Sciences
University of Michigan
Ann Arbor, Michigan

September 23, 2009

Jackson et al. (ARC Lab, UM) Combined Tabu Search and 2-opt Heuristic September 23, 2009 81 / 101



Introduction

Introduction

We introduce a combination of two
methods used to solve a vehicle
routing problem

Assignment and completion order
constraints are considered

Solution procedure guarantees
constraint satisfaction

Order constraints are met even when
constrained tasks are performed by
different agents
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Figure: Multiple agent task
assignment
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Introduction

Motivation

Military missions require proper assignment of resources

Mission planning is often rife with constraints

These missions also require precisely enforced timing

Solutions are needed in real time
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Introduction

Relevant work

Related work:

A tabu search heuristic for vehicle routing: [M. Gentreau et al.]

A tabu search heuristics: [F. Glover]

Traveling salesman heuristics: [S. Lin, B. W. Kernighan], [K.
Helsguan]

UAV mission management: [M. Faied et al.], [T. Shima, S.
Rasmussen]

Our work:

Combined tabu search and 2-opt heuristic: [J. Jackson et al.]
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Problem Definition

Agents and Tasks

Na agents are to be assigned to complete Nt tasks.

ai ∈ A, i = 1, . . . , Na, (1)

and
Tj ∈ T , j = 1, . . . , Nt, (2)

Pairwise precedence constraints:
Cpm = {Tj , Tk}, Tj before Tk

Transitive order constraints
must be obeyed

pj = {Tk ∈ T | tk ≤ tj}, (3)

dj = {Tk ∈ T | tk ≥ tj}, (4)

Agent assignment constraints:

Agents must be assigned from
a feasible set of agents

Aaj ⊆ Afj
(5)
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Problem Definition

Problem definition

Minimize the total mission time, the final arrival time of the last agent

min
T a,Co

max(taif
) (6)

s.t.

tk ≥ tj ∀Tj ∈ pk, j = 1, . . . , Nt, (7)

tk ≤ tj ∀Tj ∈ dk, k = 1, . . . , Nt, (8)

tk ≥ taik
∀ai ∈ Aak

, i = 1, . . . , Na, (9)

Aaj ⊆ Afj
. (10)

Tasks must occur
after precedents

Tasks must occur
after agents arrive

Assigned agents
must be from
feasible set
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Solution procedure

Solution procedure

Assignment constraints satisfied in
T a. Assignments are in P(Afj

).

T a = {Aa1 . . .AaNt
} (11)

Tabu search searches assignments

Local minima can be overcome

Initial

5

7

10

6
8

3

Solution

Figure: Tabu search illustration.

Order constraints satisfied in Co

Co = {u1 . . . uNt}. (12)

2-opt exchange operates on agent routes

2-opt moves proceed until improvements

are exhausted

j
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ui uj+1

uNt

u u

x x21

i+1

(a) Route before
2-opt move

1

uj ui+1
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(b) Route after 2-
opt move

Figure: 2-opt illustration.
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Results

Example problem

2 agents

30 tasks

Completion order constraints

Cp1 = {T1, T2}, (13)

Cp2 = {T2, T3}, (14)

Cp3 = {T5, T6}, (15)

Cp4 = {T6, T7}, (16)

Final arrival times:
agent 1 - 33.13s
agent 2 - 33.18s

Random initial solution

Resulting cost history
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Figure: Cost history for tabu search.
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Results

Example solution

Precedence constraints obeyed

Algorithm enforces proper
timing

Table: Completion times of constrained
tasks.

Task Time Agent

T1 8.26 a2

T2 10.51 a1

T3 16 a2

T5 3.6 a2

T6 7.68 a1

T7 12.78 a1

Example solution

Figure: Corresponding agent routes.
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Future work

Future Work

Extend to the dynamic problem

Dynamic addition and removal of agents and tasks

Develop the ability to restructure constraints online
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Motivation

VRP and Multi-UAV missions

The UAV routing problem is comparable to the VRP

The VRP optimizes the routes several vehicles should follow when
delivering goods to a network of customers from a single place of origin, a
depot.

VRP

Depot

Customers

UAV missions

Launch and Landing sites

Targets
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Motivation

VRP and Multi-UAV missions

VRP and UAV missions Disparity

VRP

One Depot

Time Window for the
VRPTW

UAV missions

Multiple Launch and
Landing sites

Various Timing Constraints
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Motivation

Motivation

Each VRP variant has its corresponding hypothetical military
multi-UAV mission.

There is a large literature on the VRP and its instances.

Focusing on multi-objective multi-UAV mission planning problems, we
aspire to take advantage of the literature in the VRP and its variants.
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VRP Instances

VRP Instances with Application to Military Missions

Capacitated VRP

CVRP is like VRP but every vehicle must have uniform capacity of a
single commodity.

Military Application

A bomber dropping certain number of bombs to attack ground or sea
target.
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VRP Instances

VRP Instances with Application to Military Missions

Multiple Depot VRP

A MDVRP requires the assignment of customers to depots.

A fleet of vehicles is based at each depot.

Each vehicle originates from one depot, services the customers
assigned to that depot, and returns to the same depot.

Military Application

This variant of VRP is represented in multiple launch and landing
sites for the UAVs in the mission.
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VRP Instances

VRP Instances with Application to Military Missions

Stochastic VRP

SVRPs are VRPs where one or several components of the problem are
random.

Stochastic customers.
Stochastic demands.
Stochastic times.

Military Application

Uncertainty in target locations, arrival times, or types represents this
type of VRP.
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VRP Instances

VRP Instances with Application to Military Missions

Periodic VRP

In VRPs, the planning period is a single day. In the case of the
Periodic Vehicle Routing Problem (PVRP), the classical VRP is
generalized by extending the planning period to M days.

Military Application

Wide area surveillance or border patrol.
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VRP Instances

VRP Instances with Application to Military Missions

Split Delivery VRP

SDVRP is a relaxation of the VRP wherein it is allowed that the same
customer can be served by different vehicles if it reduces overall costs.

Military Application

This instance can be viewed as a group of UAV attacking tactical
targets or troop concentrations cooperatively.
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VRP Instances

VRP Instances with Application to Military Missions

VRP with Time Window

VRPTW is VRP with a time window associated with each customer,
defining an interval wherein the customer has to be supplied.

Military Application

Rendering a detonator inoperative before it triggers an explosive
device is a conventional example for VRPTW.
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VRP Instances

VRP Instances with Application to Military Missions

VRP with Pick-up and Delivery

VRPPD is a VRP in which the customers return some commodities.

Military Application

A good illustration for this instance is a friendly unit, which is pinned
down by enemy units and needs to be rescued.
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Simulation

Main Contribution

We propose an algorithm that capable of solving different variants of
the VRP and also complicated UAV missions.
We show that this algorithm can handle:

Basic VRP
MDVRP
VRPTW
A combination of MDVRP and VRPTW

 

Figure: Mission Example
Faied et al. (ARC Lab, UM) VRP and Multi-UAV Missions September 23, 2009 96 / 101



Simulation

Main Contribution

The algorithm minimizes the VRPs cost function, and the conditions that
relate to its instance and additional technical specifications that relate to
the UAV mission and its targets conditions.
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Conclusion

Conclusion

We aim to show the correlation between the VRP with its different
instances and military UAV missions.

We introduce a brief survey on the VRP instances and associate each
instance with its corresponding hypothetical military mission.

Focusing mostly on solving complex multi-UAV mission planning
problem with complex constraints, we propose an algorithm that
solves the problem to optimality.

We seek to open the road for further papers that discuss this relationship
and apply the ready made solutions of the VRP to multi-UAV mission
planning.
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Flapping Wing Micro Air Vehicles

Derivation and simulation of the
dynamics of FWMAVs

Control applications

Tail
Control Mass
Stroke Plane change

Verification/comparison of dynamic
model with prototype in VICON
system
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Conclusions

Conclusions

Difficult problems tackled: distributed decision making with
incomplete information, models of human operators, assignment
problems

Many publications: 2 journal papers accepted (one in TAC), 10
conference papers published. 3 more journal papers submitted (2 in
TAC, one in Automatica).

Two students at AFRL last summer

Work related to MAX topics: flapping wing dynamics and control
(Orlowski), scaled helicopter precision landing and health monitoring
(Richardson and White), Graphical User Interfaces for scaled
helicopter testbed (White), Bond Energy Algorithms for optimal path
planning (Chang), Information-optimal paths (Hyun), Adversarial
actions (Faied), Hardware testing (undergraduate students)
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