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A B S T R A C T   

Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For 
more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too 
morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by 
whole genome doubling or more, is observed across organisms, often associated with mitigation strategies 
against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for 
polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved 
program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These 
polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence 
and, ultimately, cancer lethality.   

1. Introduction 

Metastatic cancer remains unbeatable. Metastatic cancer eventually 
becomes resistant to all therapies and kills more than 10 million people 
per year globally [1–3]. It is generally accepted that the malignant cells 
of a tumor evolve. This means that multiple genetically distinct sub-
clones of cancer cells that originated from a single initiating cancer cell 
all exist in the tumor(s) of a single patient, resulting in high cancer cell 
genetic heterogeneity [4–25]. This genetic heterogeneity is generally 
accepted as the root of therapeutic resistance: a cell lineage resistant to a 
class of therapy occurs from random and chance genetic mutation 
(Fig. 1). We have recently observed that it is likely that resistance is an 
example of convergent evolution leading to lethal cancer [3]. We believe 
that resistance is mediated through ecological and evolutionary prop-
erties of cancer cells that enter a cell-state transition that includes 1) 
polyploidization of their aneuploid genome, and 2) exiting of the cell 
cycle to pause proliferation, forming polyaneuploid cancer cells 
(PACCs). After stress is removed, PACCs undergo depolyploidization to 

repopulate the tumor, representing the source of the “rescue effect” 
associated with the catastrophic event of therapeutic intervention [26]. 

Here, we place PACCs in the context of polyploidy found in single- 
celled and multi-cellular organisms. Variously across the tree of life, 
polyploidy may provide a state that serves both ecological and evolu-
tionary functions. We discuss how, ecologically, polyploid cells may 
have 1) high survivorship under harsh conditions, 2) higher capacity for 
producing RNA and protein products, and 3) higher capacity for nutrient 
uptake. Evolutionarily, polyploid cells may 1) enhance DNA repair, 2) 
counteract Muller’s ratchet, 3) generate heritable variation among their 
offspring, and 4) permit self genetic modification in which the polyploid 
cell is able to create progeny that possess a heritable solution to a 
stressor that threatens the viability of the population. 

2. Polyaneuploid Cancer cells 

Large polymorphous cancer cells have been described by physicians 
and scientists since the 1850′s (Fig. 2) [27–58]. The majority of the 
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cancer research and treatment development communities have dis-
regarded these cells as irreversibly senescent or destined for mitotic 
catastrophe and death. A small number of pioneering scientists, 
including Erenpreisa, Cragg, Illidge, Liu, Walen, Rajaraman, Mirzayans 
and their colleagues, have now made it clear that these cells - most 
commonly termed polyploid giant cancer cells (PGCCs), but also 
referred to as multinucleated giant cancer cells, blastomere-like cancer 
cells, osteoclast-like cancer cells, pleomorphic cancer cells, large cancer 
stem cells, and polyaneuploid cancer cells (PACCs) - are important 
mediators of tumorigenesis, metastasis, and therapeutic resistance. 
Virtually all cancer cells are aneuploid (having an abnormal number of 
chromosomes or parts of chromosomes), and this aneuploidy is unique 
from tumor-to-tumor and cancer cell lineage-to-lineage [54]. PACCs are 
formed when these aneuploid cells undergo whole genome doubling in 
response to stress, resulting in multiple full sets of their cancer cell lin-
eage’s aneuploid genome, i.e., polyaneuploidy [26]. PACCs are present 
as a minor component of cell lines from all tumor types examined to date 
(Fig. 2A). They are also present in patients with nearly all types of 
metastatic cancer (Fig. 2B). 

The totality of data supports a hypothesis that therapeutic resistance 
arises as a result of the emergence of PACCs within a population of 
cancer cells (Fig. 3). PACCs appear to be a reversible phase in the life 
cycle of lethal cancers, i.e., a life history cell-state. They form as a result 
of cancer cells’ response to tumor microenvironment stress that accesses 
evolutionary and developmental programs for polyploidy, resulting in 
whole genome doubling (WGD) of the aneuploid genomic complement, 
increased cell size, and increased cell contents. PACC formation results 
in a cancer cell phenotype of reversible cell cycle arrest to avoid DNA 
damage, providing a mutation agnostic universal mechanism of thera-
peutic resistance. The increased cell size associated with WGD and the 
pause in cell cycling allows for the production of cellular machinery to 
cope with stress, increased intracellular nutrients to survive quiescence, 
and increased genetic material to allow for both genome stability in the 
short term and access to increased heritable variation over time. After a 
therapeutic stress, PACCs exhibit the ability to re-enter the cell cycle and 
undergo depolyploidization to repopulate the tumor with resistant non- 
polyploid progeny that then make up the bulk of cancer cells within a 
tumor [27,51,55,59–62]. 

3. Accessing evolutionary and developmental polyploid 
programs is a critical step in PACC formation 

Resilience to environmental perturbations through WGD and 
concomitant cell enlargement has been documented across numerous 
taxa as convergent stress response programs, including prokaryotes 
(archaea and bacteria), unicellular eukaryotes, and multicellular plants 
and animals [63–67]. These evolutionary stress response programs are 
reflected in the developmental programs of human tissue as normal cells 
respond to physiologic needs and stress. The ability to form PACCs in 
response to stress, therefore, appears to be a by-product of the conver-
gent polyploid program utilized by noncancerous organisms and cells 
(Fig. 4). Once accessed, cancer cells can use this program to survive and 

react to tumor microenvironmental stresses as well as extrinsic thera-
peutic stresses [68–70]. 

There are a limited number of ways by which a cell can become 
polyploid. Importantly, in both the initial generation of and during the 
life of polyploid cells, DNA replication, karyokinesis, and cytokinesis are 
not necessarily linked. In addition to cell fusion, polyploidy can be 
generated through endocycling, mitotic slippage, or endomitosis (Fig. 5) 
[71–77]. Terminology surrounding the generation of polyploidy can be 
somewhat confusing, with multiple overlapping terms. Endocycling, 
also referred to as endoreplication and endoreduplication, is the repli-
cation of DNA in S-phase without the cell entering mitosis. This results in 
a single nucleus with increased ploidy (e.g., 4 N). Mitotic slippage occurs 
when a cell exits the division cycle just prior to anaphase at the spindle 
assembly checkpoint [71]. This also results in a single nucleus. Endo-
mitosis, also referred to as cytokinesis failure, occurs during anaphase, 
resulting in a single nucleus, or in telophase, resulting in a multiple 
nuclei within a single cell [40,76,78–80]. The mitotic cycle and the exits 
resulting in polyploidization are tightly regulated through multiple 
checkpoints that are beyond the scope of this discussion [78,81–90]. 
Polyploid programs provide increased fitness on evolutionary timescales 
(across species) as well as within the lifespans of individual organisms 
(across tissues) [63,74,76,91–93]. The evolutionary programs are 
engaged in response to environmental perturbations and form the basis 
for the developmental programs that are observed in specialized tissues 
in response to extrinsic stresses or metabolic requirements (Tables 1 and 
2). These evolutionary and developmental programs demonstrate how 
polyploidy is adaptive and improves fitness of PACCs. 

4. Evolutionary programs for polyploidy across the tree of life 

As we explore the presence, mechanisms, and function of polyploid 
cells across diverse taxa, there are several recurrent themes. First there 
are ecological advantages to large polyploid cells in terms of surviving 
stress, proliferative cell cycle arrest, and increased metabolic potential. 
Second, there are evolutionary advantages in terms of gene repair and 
opportunities for accelerating rates of evolution. In the following sec-
tions we shall explore diverse taxa and evaluate them in terms of the 
ecological and evolutionary advantages afforded by polyploidy as well 
as the mechanisms for polyploidization. 

5. Archaea 

Polyploidy in prokaryotes is reflected in the duplication of the 
haploid single circular chromosome [94–96]. Multiple advantages of 
increased genomic material with accompanying increase in cell size 
have been proposed. Non-genetic advantages include how an increased 
cell size may facilitate predator avoidance or increase foraging rates and 
ability [97,98]. At least one species, Haloferax volcanii, appears to use 
genomic DNA as a storage mechanism for phosphate that can be used to 
synthesize important building blocks including membranes, DNA, and 
protein [99]. Multiple copies of genes may allow the cell to produce 
more of the gene product more rapidly. The presence of multiple copies 

Fig. 1. Classic model of therapeutic resistance as the result of tumor cell heterogeneity. Resistance to therapeutic interventions has classically been attributed to 
genetic tumor cell heterogeneity: within the billions of cancer cells in a tumor, resistance to therapies evolves by random stochastic chance that endows at least one 
cancer cell with resistance to a particular therapy [4–24]. 
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of genes provides an interesting yin-and-yang dynamic in regard to 
genomic mutation. It provides gene redundancy, allowing for mutation 
in one copy of a gene while retaining the wild-type information in other 
copies of the gene. This can provide genomic stability while also 
providing the opportunity for variation that can be inherited by subse-
quent generations [97]. Another advantage of polyploidy in Archaea is 
gene conversion, or the non-reciprocal transfer of information between 
homologous sequences of DNA [100–103]. Gene conversion in a poly-
ploid cell allows the unicellular organism to avoid Muller’s ratchet (the 
accumulation of deleterious genetic variation in the absence of recom-
bination, as in asexual reproduction) [104–108]. One possible method 
to avoid the accumulation of deleterious mutations over time in haploid 
organisms such as Archaea is horizontal gene transfer, endowing a 
polyploid cell with the ability to construct and subsequently select ad-
vantageous genetic variants as a survival mechanism [100–102]. 

6. Bacteria 

Bacteria have overlapping systems in response to diverse stresses 
including changes in temperature, nutrients, and toxins [98,109]. As in 
Archaea, increased cell size is associated with decreased predation and 
increased motility [98,110]. As a haploid organism with a single circular 
chromosome, bacteria too must escape Muller’s ratchet to avoid the 
inevitable extinction that is associated with the random loss of fitness 
functions [111]. The main defence against the inexorable advancing 
click of the ratchet and erosion of the genome is recombination 
[112–114]. It has been demonstrated that in response to stress, a bac-
terium can increase its spontaneous mutation rate in the absence of DNA 
damage by upregulating the error-prone DNA polymerase Pol IV and 
down-regulating enzymes responsible for DNA mismatch repair (MMR) 
[109]. Multiple other mechanisms exist to increase mutability, including 
the movement of transposable elements. While these mechanisms result 
in increasing heritable mutation through generation of multiple mu-
tants, evidence does exist supporting directed mutation. This type of 
“selected capture” of the beneficial mutation links the sensing of a useful 
genotype or phenotype to subsequent proliferation, leaving the new 
mutation unrepaired and immortalized [109,115–118]. This type of 
directed mutation could be considered a molecular Turing machine with 
oligonucleotides representing the “tape” and the restriction enzymes 
effecting transitions [119–122]. 

7. Eukaryota: protista 

Protists are the earliest form of life that contain a nucleus and exist in 
haploid, diploid, and polyploid states [123–126]. The human pathogen 
Entamoeba histolytica, for example, routinely accumulates polyploid cells 
and reduplicate their genome several times before cell division occurs. 
Polyploidy may occur without nuclear division, and the checkpoints that 
normally prevent DNA reduplication until after cytokinesis in most eu-
karyotes are not observed in E. Histolytica [127]. In vitro, the fraction of 
polyploid cells increases with serum nutrient depletion and decreases 
again when fresh serum is resupplied [128]. The lack of nutrients, 
therefore, appears to delink of cytokinesis and karyokinesis from DNA 
replication [128]. 

Another protist group, the ciliates, demonstrate both transient and 
persistent polyploidy. In ciliates, the individual cell has two nuclei each 
with a specialized role. The “somatic” nucleus builds up extreme poly-
ploidy (~1000 N) while the “germ” nucleus leads to daughter cells. 
Although diploid, the germ nucleus genome results from both gene loss 
and several events of WGD. The fitness increase through the persistent 
polyploidization events (WGDs) is not entirely clear, but it is argued that 
the increased gene dosage provides for increased metabolism [129]. 

Protists also appear to demonstrate gene editing. For instance, the 
ciliate germ nucleus may be fragmented by imprecise elimination (i.e., 
transposons or microsatellites), resulting in new DNA sequences that can 
be passed to progeny as heritable mutations [130,131]. Internal gene 
editing in the somatic nucleus (through mechanisms including DNA 
polymerase slippage, internal double strand breaks, and recombination 
reaction transposition), may increase fitness to changing environmental 
conditions during the lifetime of the organism and in the absence of cell 
division [132–134]. Upon cell division, the progeny would already 
possess heritable changes that improve their survivorship under the 
changed conditions. The haploid Foraminifera Reticulomyxa filosa uti-
lizes polyploidy to escape Muller’s ratchet [135]. The presence of mul-
tiple genomes permits lateral gene transfer, allowing the organism to 
generate mutations that can be tested for fitness while still maintaining a 
wild-type genome to ensure stability [98]. It remains unclear if this is an 
example of self genetic modification versus a form of heritable vari-
ability [136–138]. 

8. Eukaryota: fungi 

The first WGD to be discovered in unicellular eukaryotes was in the 
yeast Saccharomyces cerevisiae [93,139]. Yeast cells that are polyploid 

Fig. 2. Polyaneuploid cancer cells. PACCs are observed in cell culture: Panel A demonstrates untreated DU145 cells stained with Nile Red for contrast (scale bar =
200 um). PACCs are also observed in patients: Panel B demonstrates clinically localized prostate cancer (Gleason pattern 4 primary adenocarcinoma) stained with 
EPCAM to delineate cell borders, examples of PACCs indicated by red circles. 
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and/or aneuploid survive better and evolve faster under changing and 
adverse conditions [140]. It has been inferred that this higher fitness is a 
result of their access to more beneficial mutations and therefore 
adaptability to novel settings [140–143]. In addition to polyaneuploid 
yeast cells accessing beneficial mutations or purging deleterious muta-
tions, it has been suggested that cell size is mediated by dosage sensitive 
genes, i.e., genes that increase cell machinery, thereby increasing fitness 
[144–148]. Yeast form polyploids through meiosis without cytokinesis 
in response to toxins or adverse physical conditions. This permits rapid 
evolution of appropriate stress responses and later a return to a euploid 
state [140,148–150]. For example, recombination rates are many orders 
of magnitude higher in Candida Albicans during depolyploidization 
[151]. It is unclear if depolyploidization is by genetic variability in 

progeny with associated death of unfit offspring or accompanied by self 
genetic modification with the direct generation of only fit progeny. 

9. Eukaryota: plantae 

The main route for plant cells to increase volume is by modulating 
the cell cycle to engage in endocycling [152,153]. The resulting poly-
ploid cells are either mononuclear (with or without separated chroma-
tids) or multinucleated depending on when in M-phase the skip to G1 
occurs. Such endoploidy can be somatic and present in only in specific 
cell types [154]. This differs from plants with species poly ploidy in 
which all of the somatic cells in their normal state possess a baseline 
level of polyploidy. 

Somatic polyploidy contributes to plant development, function, and 
whole plant fitness [155,156]. The increased size of polyploid cells 
provides altered cellular functionality and organismal adaptability. 
Germinating seedlings utilize polyploidy to enlarge cells that accelerate 
the stem’s emergence from the ground. Vacuoles in these cells provide 
filler that allows fewer cells to provide the same linear growth, and these 
vacuoles store energy for additional cell division [157]. Upon emer-
gence from the ground, light negatively regulates endocycling and the 
mitotic cell cycle returns [158]. In adult plant roots and leaves, endor-
eplication can substitute for cell proliferation during harsh times such as 

Fig. 3. Therapeutic resistance as the result of tumor cell heterogeneity allowing PACC formation. We hypothesize that resistance to therapeutic interventions is the 
result of access to an evolutionary/developmental polyploid program that increases DNA content, increases cell size, and induces quiescence as a result of envi-
ronmental or therapeutic stress. The quiescent state allows the cancer cells to exit the cell cycle and avoid DNA damage and is a universal mechanism of therapeutic 
resistance that is mutation agnostic [26]. 

Fig. 4. Access to evolutionary and developmental programs that enable poly-
ploidization and quiescence are the provide the key to understanding PACC 
structure and function. The formation of polyploid cells is by no means unusual 
in nature and is observed across both unicellular and multicellular eukaryotic 
organisms. Plants, fungi, and invertebrates, as well as vertebrate animals 
demonstrate polyploid cell formation during both development and temporal 
crises. Once PACCs are formed, they have the necessary characteristics to sur-
vive the catastrophic stress of therapy and survive to provide population rescue 
to a tumor [26]. 

Fig. 5. Cellular mechanisms that generate polyploidy. In addition to cell fusion, 
polyploidy can be generated through endocycling, mitotic slippage, or endo-
mitosis [71–77]. Endocycling also (endoreplication or endoreduplication) is the 
replication of DNA in S-phase without the cell entering mitosis. This results in a 
single 4 N nucleus. Mitotic slippage occurs when a cell exits the division cycle 
just prior to anaphase at the spindle assembly checkpoint, resulting in a single 4 
N nucleus [71]. Endomitosis (cytokinesis failure) occurs during anaphase, 
resulting in a single 4 N nucleus, or in telophase, resulting in a multinucleated 
cell [40,76,78–80]. 
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lack of water, sunlight, or nutrients [76]. For example, during episodes 
of drought, polyploidy compensates for cell loss by increasing leaf cell 
size thus moderating water loss [159]. 

The induction, direction, and termination of polyploidy in plants are 
not fully understood. Light and hormones can play a role [160]. For 
example, darkness or nutrient deficiency can induce endoploidy and 
light stops it [161]. Increased cell size is associated with a proportionally 

reduced access to and transport of metabolites into the cell as well as 
upscaling of organelles (e.g. ribosomes, mitochondria) [74,162–166]. 
Moreover, the increase in cell size and therefore distance for oxidants to 
diffuse can create an imbalance in reactive oxygen species (ROS) that 
triggers a shift in metabolism as well as delays the transition from pro-
phase to prometaphase [167–171]. Thus, ROS can drive plant cell 
enlargement to facilitate chances for survival during stress. Access to 
programs for non-oxidative metabolism, inactivated apoptosis, and 
fitness in unknown future conditions would make polyploidy a benefi-
cial strategy during harsh times. 

10. Eukaryota: animalia (Drosophila) 

Polyploidy has been extensively studied in Drosophila particularly in 
regard to development and wound healing [172–177]. Cell size and 
number are tightly regulated, resulting in an approximate total cell mass 
that changes in response to whole organism metabolic demands [176, 
177]. There is evidence in Drosophila showing that increased ploidy 
suppresses cell death in response to DNA damage. Polyploid cells may 
suppress the expression of pro-apoptotic genes [173,178]. Ploidy and 
cell size utilize Myc as a central regulator which influences multiple 
signaling pathways, including ribosome biogenesis as well as Dpp, Hpo, 
insulin, and mTOR [175]. During the larval stage, many of the fruit fly’s 
cells stop dividing and undergo several cycles of endoreplication, 
reaching ploidies of >1000 N [179]. This increased DNA material am-
plifies a cell’s biosynthetic capacity [179–181]. Tissue repair in 
drosophila requires the specialized functions of polyploid cells as well as 
the proliferation of diploid cells. This balance of polyploid and 2 N cells 
appears to be mediated by Myc expression [175,179,182]. Through 
regulation of CyclinE, Myc induces initiation of the endocycle, resulting 
in cells entering S phase but skipping mitosis [73,175,179,182,183]. 
Throughout, Myc provides a major driver of mitosis/endocycle coordi-
nation [78,89,90]. Myc globally amplifies transcription and decouples 
DNA synthesis and mitosis, resulting in polyploidy. 

11. Development programs for polyploidy across human tissue 

Noncancerous cells that form polyploids provide clues into the sig-
nificance of increased size and increased DNA content of PACCs. PACCS 
may be able to epigenetically access cellular programs typically 
restricted to subsets of normal tissue cell types, e.g., megakaryocytes, 
keratinocytes, macrophages, osteoclasts, and trophoblasts as well as 
hepatocytes and myocytes [71,76,91,92,172,184–187]. A common 
theme across these tissue types is a need for the cells to amplify meta-
bolic function to fulfill a physiologic need or enhance survivorship under 
stress. To generate muscle hypertrophy in response to exercise or injury 
stress, cardiac myocytes utilize polyploidization. Bone marrow macro-
phages fuse to create multinucleated giant osteoclasts allowing them to 
produce higher quantities of acid for dissolving bone matrix. In response 
to chronic infection, macrophages form giant multinucleated histocytes 
that can engulf foreign bodies. 

In addition, polyploid cells are necessarily, at least transiently, in a 
state of proliferative cell cycle arrest, defined as G0 or quiescence. In 
multicellular organisms, the non-proliferative nature of terminally 
differentiated cells is essential for whole-organism tissue organization 
and fitness. Restricting proliferation of polyploid cells, especially in 
tissues experiencing stress and at risk for DNA damage, protects the cell 
lineage and, consequently, the organism as a whole. Quiescence, 
therefore, serves to isolate the effects of any DNA damage or disorga-
nized inherited variation, preventing any deleterious (and possibly 
cancer-initiating) variation from being inherited by future generations 
of cells [188]. 

12. Trophoblasts 

Placental trophoblasts form giant cells through endoreduplication, 

Table 1 
Evolutionary Polyploidization Programs.  

Organism 
taxa 

Type of Program Purported advantage References 

Archaea  - DNA 
replication 
without cell 
division  

- Phosphate storage  
- Avoid predation  
- Increased motility  
- Increased gene 

dosage  
- Gene conversion 

[94,95,96,97,98,99, 
100,101,102,103, 
104,105,106,107, 
108] 

Bacteria  - DNA 
replication 
without cell 
division  

- Enable quiescence  
- Increased mutation 

rate  
- Downregulation of 

error-correcting 
replication enzymes  

- Directed mutations 

[109,110,111,112, 
113,114,115,116, 
117,118,119,120, 
121,122] 

Protists  - Endomitosis  - Increase metabolism  
- Enable quiescence  
- Gene editing 

[123,124,125,126, 
127,128,129,130, 
131,132,133,134, 
135,136,137,138] 

Fungi  - Meiosis 
without cell 
division  

- Increased gene 
dosage  

- Increased mutation 
rate 

[139,140,141,142, 
143,144,145,146, 
147,148,149,150, 
151] 

Plants  - Endocycling  
- Endomitosis  

- Increased storage  
- Predator protection  
- Increased gene 

dosage 

[152,153,154,155, 
156,157,158,159, 
160,161,162,163, 
164,165,166,167, 
168,169,170,171] 

Drosophila  - Endocycling  - Increased metabolism [172,173,174,175, 
176,177,178,179, 
180,181,182,183]  

Table 2 
Development Polyploidization Programs.  

Cell type Type of 
Program 

Purported 
advantage 

References 

Trophoblasts  - Endocycling  - Placental 
development  

- Embryo 
nutrition 

[189,190,191,192, 
193,194,195] 

Keritinocytes  - Mitotic 
slippage  

- Buffer for toxin 
stress  

- Increased 
genomic 
stability 

[154,185,196,197, 
198,199,200] 

Megakaryocytes  - Endomitosis  - “Efficient” 
platelet 
production 

[201,202,203,204, 
205,206] 

Macrophages and 
osteoclasts  

- Cell fusion  
- Endomitosis  

- Increased cell 
function 

[207,208,209,210, 
211,212,213,214, 
215,216,217] 

Myocytes  - Endocycling  
- Endomitosis  

- Increased 
metabolism 

[218,219,220,221, 
222,223,224,225, 
226,227,228] 

Hepatocytes  - Endomitosis  - Increased 
genomic 
stability  

- Increased 
genetic diversity  

- Buffer for toxin 
stress  

- Increased 
metabolism 

[229,230,231,232, 
233,234,235,236, 
237]  
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resulting in high levels of ploidy. These large cells are associated with 
embryo implantation and placental development [189–191] assisting 
with placental connection and protection. The switch from the mitotic 
cycle to the non-proliferative endocycle has been extensively studied in 
trophoblasts and centers on a G2 decision point [192]. This decision 
point is regulated, in part, by the zinc finger transcription factor Snail 
which mediates expression of cyclins A and B. In addition, cyclin E co-
ordinates the G1 to S phase transition and is essential for successful 
endocycling [192–194]. Simultaneously, the cyclin B/Cdk1 complex is 
not activated, resulting in inhibition of the mitotic cycle [193]. As 
demonstrated for yeast, trophoblasts undergo depolyploidization as the 
blastocyst forms [195]. 

13. Ectoderm: keratinocytes 

Keratinocytes are constantly exposed to mutagens in the form of UV 
irradiation and environmental toxins [185]. Polyploidization may pro-
vide a mechanism to protect genome integrity by providing multiple 
copies of genes and restricting cell division. Some estimates place the 
percentage of polyploid cells in normal epidermis at up to 50 % [185]. In 
support of this idea, treatment with genotoxic agents induced differen-
tiation and polyploidization in dividing keratinocytes [154,196]. This 
suggests that keratinocyte differentiation responds to DNA damage 
through mitosis checkpoints [197–200]. Similar to what is observed in 
drosophila, endoreplication appears to be stimulated by Myc and 
accumulation of cyclin E [154]. Keritinocytes, in response to DNA 
damage, progress through S-phase but arrest in G2/M which results in 
polyploidy through mitotic slippage via modulation of multiple check-
point molecules, including depletion of Cdk1, Plk1, or AUR-A [196,198, 
198,199,200]. In addition to providing increased gene dosage, it has 
been suggested that polyploidy with concomitant increase in cell size 
may allow for cell survival and maintenance of barrier function [200]. 

14. Mesoderm hematopoietic lineage: megakaryocytes 

Megakaryocytes are large (50–150 μm) differentiated cells dedicated 
to the production of platelets in mammals [201–204]. As these cells 
differentiate and mature, megakaryocytes undergo endomitosis, result-
ing in a polyploid nucleus that is 16 N on average, but has been observed 
up to 128 N [201–204]. As they increase in size, megakaryocytes exhibit 
an invaginated membrane system that is continuous with the plasma 
membrane, permeates the cytoplasm, and provides the extra membrane 
necessary for platelet formation and budding [205]. The large size may 
be necessary to have enough material to generate platelets. Further-
more, polyploidy may amplify the production of RNA and proteins for 
increased cellular metabolism and platelet production. The increased 
genomic material and increased cellular machinery results from the cell 
cycle stalling during late cytokinesis [72,79,204,206]. Telophase takes 
place with the formation of an apparently normal midzone and cleavage 
furrow. This is followed by rapid regression of the furrow resulting in a 
single cell with a single nucleus [201]. Molecular studies reveal that cell 
cycle disruption is mediated by a series of transcription factors (e.g, 
RUNX1, FLI1) that interfere with the RhoA pathway and regulate cyclins 
D and E [201]. 

15. Mesoderm hematopoietic lineage: macrophages and 
osteoclasts 

Multinucleated macrophages have been observed in multiple gran-
ulomatous diseases such as tuberculosis, leprosy, and histoplasmosis, 
among others [43,207,208]. Multinucleated macrophages commonly 
form via cell-cell fusion through a well delineated series of steps that 
include pre-fusion priming of the cells, cell-cell adhesion, membrane 
fusion and multi-nucleation, and post-fusion reprogramming [209,210]. 
While it has been demonstrated in multiple systems that multinucleated 
macrophages can be formed by cell fusion in response to a variety of 

cytokines including IL4, proliferating macrophages in granulomas may 
also utilize aborted cytokinesis to increase in size and genome content 
[43,208,211,212]. The inflammatory microenvironment is a threat to 
DNA integrity due to the presence of ROS. In macrophages, if DNA 
double strand breaks are detected, the MRN complex (MRE11, NBS1, 
RAD50), is activated, leading to a robust DNA damage response (DDR). 
The DDR is activated by ATM kinase with subsequent downstream 
activation of CHK2 and p53 [208,213,214]. 

Bone marrow macrophages also fuse to form osteoclasts, large 
multinucleated cells for lysing bone matrix [43,209]. Polyploidy in this 
case serves to increase the production of cell products. Prior to fusion, 
pre-osteoclasts exit the cell cycle, presumably to protect their genome 
integrity [215–217]. Fusion is mediated by DC-STAMP, which in turn is 
regulated by multiple transcription factors, including c-Fos, NFATc1, 
PU.1, and NF-kb [43]. 

16. Mesoderm mesenchymal lineage: myocytes 

After birth, cardiomyocytes halt cell division and increase their size 
in response to injury via WGD [187,218]. Polyploid cells with a single 
nucleus arise via endocycling and multinucleated cells arise through 
failed cytokinesis. This failed cytokinesis occurs late in the cell cycle 
during abscission, at which time the cytokinetic furrow regresses [187, 
219,220]. Entry into S-phase is mediated by the induction of cyclin D1 
but M-phase entry is inhibited by the inactivation of CDK1 [221–223]. 
Rather than dedifferentiate to allow transit through the cell cycle with 
subsequent hyperplasia, cardiomyocytes increase in size and increase 
their number of contractile sarcomeres via hypertrophy. This suggests 
that the increased ploidy both protects the cell lineage from possible 
DNA damage and underlies a need for increased transcriptional output 
for subsequent protein synthesis and metabolism [187,219,220]. Poly-
ploid vascular smooth muscle cells have been observed in chronically 
hypertensive animals [224]. As polyploid vascular smooth muscle cells 
increase in DNA content, they increase in size with a concomitant in-
crease in RNA and protein. This increase is about twofold in tetraploid 
cells and fourfold in octaploids [176,225–227]. It appears that polyploid 
formation occurs in response to oxidative stress [228]. 

17. Endoderm: hepatocytes 

In mammals, hepatocyte polyploidy contributes to both post-natal 
development and tissue regeneration throughout life. Both single and 
multi-nucleated polyploid cells can occur depending on the poly-
ploidization pathway [71,184,229,230]. Polyploidy of hepatocytes re-
sults from endoreplication, or from failure to complete cytokinesis [229, 
231,232]. Though controversial, cell fusion seems to provide a rare but 
recurrent process for generating polyploid hepatocytes under physio-
logical conditions [232]. Though the mechanisms for generating poly-
ploidy in hepatocytes are known, the role played by these polyploid cells 
remains unclear. It has been demonstrated that proliferating hepato-
cytes produce a diverse population of progeny with multiple chromo-
some imbalances. It has been proposed that hepatocytes generate 
genetic diversity allowing them to adapt to xenobiotic or nutritional 
injury [71]. Alternatively, increased genomic material may provide a 
buffer against gene loss (i.e, providing a redundant genome) that would 
prevent cells from performing their whole organism function [71,233, 
234]. In addition, and not mutually exclusive to other postulated roles, 
polyploidization could provide increased cellular machinery as a buffer 
against oxidative stress [235–237]. A further potential reason for poly-
ploidization may be the need to redirect energy to the production of 
cellular materials (e.g., RNA, proteins, or lipids) to maintain or increase 
metabolic activity when resources are limited such as during postnatal 
growth or regeneration after partial hepatectomy [91,235]. In support 
of this explanation, polyploid cells have few differentially expressed 
genes as compared to diploid cells. In these polyploids, WGD does not 
induce mutations or transcription reprogramming. Instead, they exhibit 
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increased transcriptional/translational production of cell materials 
[91]. 

18. Relevance of evolutionary and development polyploid 
programs to PACCs 

Access to evolutionary and developmental programs that enable 
polyploidization provide the key to understanding PACC structure and 
function (Fig. 4). While the evolutionary programs emphasize the 
complementary response programs of genomic stability and heritable 
variation, the developmental programs emphasize response programs 
that allow survival and adaptation to stress secondary to metabolic 
needs. All of the development programs utilized by normal tissue cells 
provide roadmaps for understanding the mechanisms by which poly-
ploidy is generated in PACCs. Megakaryocytes provide an extreme 
example in the human body of multi-lobulated single nuclei. They are a 
prime example of increasing DNA material to produce more cellular 
building blocks to increase the machinery necessary to produce plate-
lets. If, for example, PACCs have a single multi-lobulated nucleus versus 
multiple nuclei, it is likely that they are accessing the development 
program utilized by megakaryocytes to endocycle. Determining the true 
nature of PACC nuclear content is a high priority. 

Throughout evolution, it appears that polyploidization has been 
preserved across species as a rapid response to environmental stress by 
increasing cellular functional capacity and contributing to genome sta-
bility while halting proliferation, thereby protecting organisms from 
deleterious mutations [185,186,238]. The protists, for example, 
demonstrate that polyploidization increases cellular capacity for 
increased fitness rather than through increases in gene dosage. Although 
the protists appear to have a versatile capacity for gene-editing during 
their polyploid phases, the link between gene editing and heritability 
remains unclear. Polyploid yeast cells, for example, have been shown to 
have higher fitness due to initial dampening of deleterious mutations 

and subsequent access to beneficial mutations that lead to increased 
heritable variation [140–143]. 

The depolyploidization programs described in fungi represent early 
evolutionary programs that form the basis for meiosis programs in eu-
karyotes and subsequently the presumed depolyploidization programs 
of PACCs [62,239–241]. For example, within a population of cancer 
cells induced by radiation to undergo mitotic catastrophe, a subset of 
PACCs are formed which subsequently undergo depolyploidization to 
form non-polyploid progeny [62,242]. It appears that successful depo-
lyploidization is linked to expression of meiotic-specific pathway genes 
including SYCP2, SYCP3, DMC1, SPO11, REC8, STAG3, and MOS [62]. 
Alternatively, in ovarian cancer, PACCs appear to form in response to 
stress and produce progeny by amitotic mechanisms, e.g., budding [38, 
243,244]. It has been demonstrated that a single multinucleated cancer 
cell can reform an entire tumor population [55]. The mechanisms by 
which PACCs produce progeny need to be delineated in detail. 

19. Potential for PACCs to create therapeutic resistance 
mechanisms 

The generation of WGD of aneuploid cancer cells and the resultant 
polyaneuploidy is now well documented in the cancer literature [236, 
245]. It is not established, however, whether this polyploidization is 1) 
an obligate step of a resistance program of randomly generated clones as 
part of existing tumor cell heterogeneity [4,10–12,15]; 2) a means of 
inducing quiescence to increase cellular machinery to survive while 
protecting genomic material for future progeny [30,38,42,45,57,246, 
247]; 3) a means to increase genetic stability to prevent apoptosis in a 
cell with damaged DNA while also allowing increased genetic instability 
to create heritable variation [75,76,92,173,248–251]; and / or 4) a 
potential means of generating self genetic modification (Fig. 6). 

Fig. 6. Models to explain how PACCs may contribute to the evolution of resistance. Polyaneuploid cells appear to be part of a central pathway in the generation of 
therapeutic resistance. It is not established, however, whether this polyploidization is 1) an obligate step of a resistance program of randomly generated clones as part 
of existing tumor cell heterogeneity [4,10–12,15]; 2) a means of inducing quiescence and increasing cellular machinery to survive while protecting genomic material 
for future progeny [30,38,42,45,57,246,247]; 3) a means to increase genetic instability to create heritable variation [75,76,92,173,248–251]; and / or 4) a means of 
generating self genetic modification [109,115–118]. 
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19.1. The ecological concept of a fundamental niche 

Polyploidy either protects the cell through quiescence, potentially 
accelerated evolution, or both. Accelerated evolution would occur 
through two pathways, either evolutionary triage through heritable 
variation and, controversially, some form of self genetic modification, 
also referred to as genetic assimilation, gene editing, or adaptive mu-
tation. Regardless of the pathway, a clear definition of the ecological 
concept of a fundamental niche is required [252]. 

The fundamental niche of an organism – or of a cancer cell – repre-
sents the range of environmental conditions over which the organism 
can maintain a viable population. For cancer cells, the fundamental 
niche is the tumor microenvironment that allows the cells of the newly 
initiated clade to proliferate and accumulate mutations that lead to the 
establishment of a successful tumor population. Experiencing conditions 
inside or outside of its fundamental niche pose two very different eco- 
evolutionary challenges. Evolution acting on organisms within their 
fundamental niche selects for adaptations that allow the organism to 
succeed relative to others. While individuals will increase in frequency, 
those with a less fit trait will die off due to the presence of the fitter one. 
This is the typical context for evolutionary triage where far more in-
dividuals are born than can survive. Having more heritable variation 

accelerates evolution by increasing the likelihood of having fitter in-
dividuals causing the less fit to die off. It is well accepted that heritable 
variation is the predominant driver of natural selection for organisms 
primarily experiencing ecological conditions within their fundamental 
niche (Fig. 7). 

What happens when environmental conditions deteriorate so dras-
tically that the organism it is now outside of its fundamental niche? In 
the absence of a rapid return to favorable conditions, the organism will 
migrate to more favorable conditions or simply go extinct at that loca-
tion. Alternatively, the organism could enter a protective quiescent 
state, halting reproduction and therefore protecting its genomic material 
from assault, and wait until conditions or its own fitness change. As 
another strategy, the organism could evolve traits that expand its 
fundamental niche to include the otherwise harsh conditions. In the 
tumor cell heterogeneity model of therapeutic resistance, a resistant 
clone has randomly been generated in the population through stochastic 
mutations as a result of genetic instability (Fig. 6). In this model, poly-
ploidization represents a transitory phenotype that the already-resistant 
clones employ prior to repopulating the tumor. This transitory cell state 
most likely represents a strategy of the cell to enter quiescence to ensure 
genome integrity in the presence of the therapeutic stress. 

Fig. 7. Evolutionary and ecological dynamics 
along adaptive landscapes. Panel A shows the 
adaptive landscape (solid black line) for a pop-
ulation within its fundamental niche (shown as 
the solid yellow circle) that demonstrates both 
ecological fitness and evolutionary equilibrium 
(peak of the adaptive landscape) where the y- 
axis is fitness (measured as per capita growth 
rate) and the x-axis represents a heritable trait 
value. Panel B demonstrates a drastic change to 
the environment that dramatically shifts the 
original adaptive landscape (dotted line) to a 
new adaptive landscape (solid line). Under 
these new conditions the population with the 
identical trait value (solid blue circle) may find 
itself outside of its fundamental niche (i.e., 
“underwater”) and therefore nonviable. Panel 
C: Alternatively, consistent with the tumor cell 
heterogeneity model, this catastrophic loss in 
population size may identify a rare clone that 
can survive in the altered landscape and recover 
its viability (yellow circle at the “waterline”). 
Panel D: If the population can wait out the 
change in landscape (i.e., “hold its breath”), the 
population can be rescued if conditions improve 
and the original adaptive landscape is re- 
established. Panel E: Evolutionary triage can 
drive the population’s trait value along the new 
fitness landscape until an eco-evolutionary 
equilibrium is re-established. While evolu-
tionary triage is effective to adapt to slow 
changes in the landscape, it is unlikely to be 
effective in response to a catastrophic event. 
Panel F: If the population’s trait value is outside 
of its fundamental niche (solid blue circle) then 
it is doomed to extinction unless it can evolve 
fast enough to achieve a viable trait value (solid 
yellow circle). Via PACCs, the controversial 
concept of self genetic modification may pro-
vide the most efficient (or perhaps the only) 
way for this evolutionary jump to occur. This 
will expand the fundamental niche of the pop-
ulation to now include the otherwise disastrous 
conditions. Once recovered (solid yellow circle), 
evolutionary triage can resume evolution to-
wards an eco-evolutionary equilibrium.   
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19.2. Evolutionary triage to create heritable variation 

Natural selection by evolutionary triage is particularly effective 
when the cancer cell population is well within its fundamental niche 
[253–256]. Within its fundamental niche, the tumor environment is 
favourable and there are no stressors that threaten the viability of the 
population of cancer cells. Cancer cells can persist even if their total 
phenotypic trait values are far away from an evolutionary optimum and 
progressive evolution is underway towards ever more fit individuals. 
Under these circumstances, through proliferation and cell deaths, nat-
ural selection can drive cell lineages towards evolutionary optimum. 
The only threat to the extant cancer cells is their replacement by cells 
with fitter trait values. When a species or cancer cell population resides 
in its fundamental niche, evolution is more about outcompeting a 
neighbour rather than surviving exogenous environmental stressors. 

Theoretically, PACCs could play an evolutionary role by accelerating 
evolution by generating a wider array of heritable variation in their 
offspring. These 2 N + offspring would then undergo evolutionary triage 
as fitter variants prosper at the expense of other 2 N + members of the 
population. When the cancer cell population resides within its funda-
mental niche, PACCs would allow for faster evolutionary tracking of 
changing tumor microenvironments, faster evolution towards evolu-
tionary optimum, and more rapid diversification of cancer cell types 
within a heterogeneous tumor. A mechanism by which PACCs simply 
increase the heritable variation among their 2 N + offspring would be an 
inefficient way of generating evolutionary rescue when the stressor 
pushes the cancer cell population outside of its fundamental niche. By 
creating genetic shotgun blasts of variation, PACCs could create what 
Goldschmidt termed “the hopeful monster” [257–259]. For cancer, the 
hopeful monster would be that rare chance 2 N + cancer cell that now 
possesses traits that make the stressful environment a part of its 
fundamental niche. Such evolution is seen as being saltatorial, creating 
large jumps in the trait values of the organism. While controversial, such 
evolution does occur in multicellular animals and is also associated with 
whole species polyploidy and a source of evolutionary rescue 
[260–263]. 

If genetic instability followed by evolutionary triage were the pri-
mary mechanism at play, multiple different clones, each with unique 
genetic variation, would be produced, but only a subset of these would 
survive while the rest would die off. When studied in an in vitro micro-
fluidics environment designed to simulate stress, PACCs generate 
resistant progeny without concomitant generation of multiple non- 
viable progeny [51,68]. This suggests an alternative mechanism other 
than genetic instability (Fig. 7). 

19.3. Quiescence as a mechanism to protect the genome 

The polyploid program, as an inherent non-proliferative quiescent 
state, protects cells from immediate genome damage. In this cell state, 
PACCs can adapt a new function for WGD that is not a traditional 
evolutionary or developmental reason for polyploidization. Ecologi-
cally, the PACC state may provide higher survivorship during times of 
extreme stress. Under the stressor, a population comprised only of 2 N +
cells far outside of its fundamental niche may have extremely low 
viability. Even as the population collapses, PACCs may provide a means 
for the cancer cells to simply survive [51,68,264]. Once conditions 
improve, the PACCs can re-establish the highly proliferative 2 N + state. 
In this model, there is no mutation to generate a resistance phenotype - 
quiescence to protect genome integrity is sufficient. This is akin to many 
protists forming an encysted non-proliferative state that survives harsh 
environmental conditions that are unfavourable for proliferation [128]. 
Quiescence, senescence, polyploidy, and cancer are clearly closely 
related but their intersecting biology remains poorly understood [45]. 
As previously noted, these large amorphous cancer cells were dis-
regarded and not deemed to be functionally important because they 
were considered to be irreversibly senescent or destined for mitotic 

catastrophe. Our own studies suggest that only a minority of PACCs 
induced by chemotherapy exhibit canonical senescence biomarkers 
(data not shown). Studies conducted in yeast, Drosophila, cancer 
models, and clinical data suggest, however, that the polyploid state 
mediates therapy-resistant phenotypes [46]. Furthermore, there is evi-
dence that a population of cancer cells can survive chemotherapy and 
radiotherapy by entering a reversible senescent state called 
therapy-induced senescence (TIS) that displays many of the features of 
the normal physiological senescence phenotype [46,265]. Determining 
the relationship of stress induced whole genome doubling with 
concomitant exiting of the active cell cycle with be critical in defining 
the roles of quiescence versus senescence versus paused proliferation in 
PACC biology. 

19.4. Self genetic modification as a mechanism to alter the genome 

Effecting evolutionary rescue by producing a plethora of genetic 
variants would be wasteful of offspring as most would simply die and, at 
best, only a small percentage might have trait values that include the 
now stressful conditions as part of their fundamental niche. It would be 
much more efficient if PACCs used their capacity for increased RNA and 
protein production and increased intracellular genetic variability to 
assess their lack of viability under the stressor, and respond by enacting 
a metabolic solution that can then be back-encoded into the DNA itself, i. 
e., self-captured mutation [109,115–117]. This could then form the 
basis for budding off 2 N + cells that already carry a heritable solution to 
the stressor. Such evolution is controversial and has variously been 
described as genetic assimilation, gene editing, or adaptive mutations 
and is not widely accepted as an evolutionary mechanism [116, 
266–269]. In 1953, the founder of systems biology Waddington pro-
posed genetic assimilation as a feedback between acquired traits and 
genetic encoding [270,271]. More recently genetic assimilation has 
been proposed for similar observations in yeast [272]. Bacteria have 
evolved overlapping systems to respond to a variety of stresses including 
changes in temperature, nutrients, and toxins [98,109]. Multiple 
mechanisms to increase mutability exist, including the movement of 
transposable elements, exist. While these mechanisms result in 
increasing heritable mutation through generation of multiple mutants, it 
has been argued that evidence also supports the selective capture of 
directed mutations [109,266–268,273–279]. 

Experimentally, we do not observe the death of mutant clones that 
should be generated by heritable variation. The acquisition of drug 
resistance appears to occur without the random mutations and creative- 
destruction explained by heritable variation [68,280,281]. Thus, it ap-
pears that PACCs have the means to assess the stressor, identify a so-
lution, and then alter genes or epigenetics to respond appropriately. If 
this is true, rather than just being the recipe of inheritance dictating 
phenotypes and traits, the genetic architecture itself becomes a trait that 
offers a remarkable source of phenotypic plasticity that enables a form of 
self genetic modification. The capacity for self genetic modification 
would then be an adaptation produced by natural selection, providing 
an alternative and more efficient, albeit controversial, means for 
adapting to novel stressors [282,283]. Evolutionary triage may be too 
slow and too wasteful of unviable offspring to effect evolutionary rescue, 
particularly when conditions leave the current population far outside of 
its fundamental niche. Self genetic modification, if it exists, may be the 
pathway by which polyploidy allows single celled organisms and cancer 
cells to extend their fundamental niche to include otherwise disastrous 
conditions. 

19.5. Genome chaos as a mechanism to alter the genome 

These potential strategies to evolve the genome of PACCs in response 
to stress, regardless of mechanism, can be framed as a microevolutionary 
modifications - limited changes to the genome over time to improve 
survival. It is also possible that PACCs utilize a more macroevolution 
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strategy - large and rapid changes to the genome through the formation 
of chaotic genomes, e.g., through chromosome fragmentation [243, 
284–286]. Stress can lead to shattered chromosomes that can be 
randomly rejoined throughout the genome, resulting in chromothripsis 
and increasing karyotype complexity [284,287,288]. The genome sys-
tem theory proposes that chromosomes act as gene topologic organizers 
(karyotype coding) and function to drive macroevolution through 
genome based rather than gene-based inheritance [284]. Understanding 
the interplay of microevolution and macroevolution systems will be 
critical to understanding how PACCs evolve resistance to microenvi-
ronment and treatment stresses [243]. 

20. Conclusion 

The capacity for cells to assess stressors, identify solutions, and alter 
its genes or epigenetics in ways that results in viable solutions must have 
been advantageous since life inhabited settings where drastic environ-
mental changes occur. Unicellular life has been present on Earth for 
most of its 4.5 billion year old history, and present for at least half of this 
time in surface environments where conditions like redox, light, and pH 
change ceaselessly [289–292]. Thus, organisms with capacities for 
assessing being removed from their fundamental niche, for enduring the 
time outside of the fundamental niche, and for accelerated evolution to 
yet again become viable, have been selected for over billions of years. 
Although not widely discussed in the cancer literature, polyploidy as a 
means to endure, come through, and maybe even assess the harsh con-
ditions is likely a robustly evolved capacity for the many different kinds 
of cells and organisms that employ it during their life in variable 
settings. 

PACCs represent a formidable challenge to managing and curing 
cancer. As the source of therapeutic resistance, PACCs appear to be the 
primary source of cancer’s lethality. Targeting PACCs is a difficult task 
since they represent such a tiny fraction of the overall tumor cell burden 
and are actually formed in response to external stress, including therapy. 
Further work is required to understand the mechanisms by which PACCs 
are formed and how these mechanisms can be targeted. It is clear that 
multiple strategies will need to be combined that both eliminate the bulk 
a large number of the 2 N + cancer cells that make up the bulk of the 
cancer cell population and a strategy to kill the few in number, but 
critically important PACCs. One potential strategy will be to identify and 
eliminate or prevent the stresses that cause PACCs to initially form in the 
primary tumor microenvironment. This would prevent the initiation of 
lethal phenotype and formation of metastasis initiating cells. This opens 
the door for potential prevention strategies, potentially by inhibition of 
the formation of reactive oxygen species [293–295]. This type of strat-
egy may not be possible, however, when an extrinsic stress such as 
chemotherapy is needed to eliminate large populations of proliferating 
cancer cells. Drawing from ecology, successful strategies will likely 
require an evolutionary double bind whereby an organism is forced to 
adopt an adaptive response to an environmental stressor which then 
makes it vulnerable to a second, different stressor [24,296]. 

For cancer populations, we envision that the first strike would take 
the form of an anti-proliferative agent, e.g., chemotherapy to eliminate 
the majority of 2 N + dividing cancer cells. Killing the surviving PACCs 
will require a novel second-strike therapy that specifically targets their 
unique vulnerabilities (Fig. 8). Clues to these potential susceptibilities 
are beginning to be identified. As the programs that control poly-
ploidization are defined (Fig. 4), multiple inhibitors of the cell cycle 
checkpoints are clinically available, ready to be applied in strategic 
manners [297–301]. Aneuploidy itself and the necessity for appropriate 
chromosome segregation likewise offers multiple therapeutic targets 
[302–305]. Many agents along these pathways have been developed but 
have failed in the clinic because they have been given 
non-discriminately to the whole population of cancer cells. The large 
size and increased cellular contents of the PACCs offer potential targets 
secondary to altered metabolic pathways, e.g., lipid biosynthesis, as well 

as protein homeostasis and cell energetics [293,306,307]. Quiescence 
and therapy induced senescence also offer unique strategies, again if 
applied in a double bind fashion [308–310]. Moreover, the abnormal 
morphology of PACCs suggests that there may be unique cell surface 
antigen profiles that can be exploited for directed antigen-conjugation to 
deliver a toxic payload to the cells. Targeting PACCs must be a high 
priority as they are the key to therapeutic resistance and the incurability 
of cancer. 
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